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Abstract Formal integration of models and data to test hypotheses about the processes controlling
carbon dynamics in lakes is rare, despite the importance of lakes in the carbon cycle. We built a suite of
models (n = 102) representing different hypotheses about lake carbon processing, fit these models to data
from a north-temperate lake using data assimilation, and identified which processes were essential for
adequately describing the observations. The hypotheses that we tested concerned organic matter lability
and its variability through time, temperature dependence of biological decay, photooxidation, microbial
dynamics, and vertical transport of water via hypolimnetic entrainment and inflowing density currents. The
data included epilimnetic and hypolimnetic CO, and dissolved organic carbon, hydrologic fluxes, carbon
loads, gross primary production, temperature, and light conditions at high frequency for one calibration and
one validation year. The best models explained 76-81% and 64-67% of the variability in observed
epilimnetic CO, and dissolved organic carbon content in the validation data. Accurately describing C
dynamics required accounting for hypolimnetic entrainment and inflowing density currents, in addition to
accounting for biological transformations. In contrast, neither photooxidation nor variable organic matter
lability improved model performance. The temperature dependence of biological decay (Q10) was estimated
at 1.45, significantly lower than the commonly assumed Q10 of 2. By confronting multiple models of

lake C dynamics with observations, we identified processes essential for describing C dynamics in a
temperate lake at daily to annual scales, while also providing a methodological roadmap for using data
assimilation to further improve understanding of lake C cycling.

1. Introduction

Of the carbon (C) loaded to inland waters at a global scale, 50-60% evades to the atmosphere, ~20% is
buried, and only 25-30% is transported downstream to the oceans (Raymond et al., 2013; Tranvik et al.,
2009). Lakes, streams, and other freshwater ecosystems are thus globally significant hotspots for carbon
transformation and storage, burying or emitting nearly 3 Pg C year™', an amount similar in magnitude to
the global terrestrial C sink (Le Quéré et al., 2016). These integrated global estimates mask information about
the controls of freshwater carbon cycling, which is essential for estimating C transformation and storage rates
under changing environmental conditions. The importance of C cycling controls is evident from the huge
variability in the fate of carbon among individual lake ecosystems. For instance, C burial rates in lakes can vary
1,000-fold within a relatively small geographic region, and the proportion of the C load to a lake that is
emitted to the atmosphere varies from 1% to as much as 75% (Einola et al., 2011; Tranvik et al., 2009).

Making sense of the variability in C dynamics is essential for understanding carbon processing in lakes and
predicting future carbon balances. Previous studies demonstrate the wide range of processes that can impact
lake carbon cycling and emissions, like the lability of organic matter and how it changes through time (del
Giorgio & Davis, 2003; Guillemette & del Giorgio, 2011; Middelburg et al., 1993), the temperature dependence
of microbial respiration (del Giorgio & Davis, 2003; Guillemette & del Giorgio, 2011; Middelburg et al., 1993),
photooxidation (Amado et al., 2003; Cory et al, 2014; Molot & Dillon, 1997; Shiller et al., 2006), physical
processes like mixing and stratification (Bower & McCorkle, 1980; C. A. Kelly et al., 2001; Rueda et al., 2007;
Vachon & del Giorgio, 2014), and many others. Yet it is not clear which of these processes are essential for
accurately describing or predicting carbon dynamics.
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Efforts to model lake carbon cycles have generally assumed a priori which processes should be represented
in the model, and then estimated (formally or informally) the parameters of that fixed model structure, rather
than treating the model structure as a set of hypotheses to be tested. Consequently, we lack evidence-based
guidance on what mechanisms should be included in lake carbon biogeochemistry models, and perhaps the
performance of past models has suffered as a result. For instance, some models which have assumed
temperature-sensitive decay of a single, uniformly labile dissolved organic carbon (DOC) pool have been able
to reproduce observed annual average carbon stocks, but produced substantial mismatches to observed sea-
sonal dynamics (Cardille et al., 2007; Hanson et al., 2004). Another model added variable lability and photo-
oxidation to a temperature-sensitive decay model, but often deviated from in situ observations despite its
ability to describe DOC dynamics in lab incubations (Vachon, Solomon et al., 2017). Rigorous, hypothesis-
driven integration of models with data would allow clear tests of the importance of proposed mechanisms
and robust estimates of process rates and improve our ability to describe and predict carbon dynamics in
lakes. In this study we used a data assimilation approach to test hypotheses about the processes essential
for accurately representing C dynamics in a lake ecosystem. We considered biotic and abiotic processes that
are known or thought to have important effects on C processing in lakes, including variable lability of organic
carbon (Guillemette & del Giorgio, 2011), temperature dependence of biological decay (Yvon-Durocher et al.,
2012), photooxidation (Vachon, et al., 2016), microbial dynamics (Middelboe & Lundsgaard, 2003), and verti-
cal transport of water via hypolimnetic entrainment (Jennings et al., 2012) and inflowing density currents
(Rueda et al., 2007). We used a Bayesian Markov chain Monte Carlo approach, and two years of data from a
dimictic north temperate lake, to parameterize a large suite of models, which included various combinations
of our hypothesized processes. We determined which processes were essential to include in the model in
order to accurately represent carbon dynamics and asked whether fitted estimates of key parameters were
consistent with previous estimates derived from other systems and approaches.

2. Methods

We aimed to identify model structural assumptions (described in more details in the supporting information)
that were critical for good representation of epilimnetic C dynamics in situ. We built 102 models with various
combinations of the structural assumptions and calibrated them against the observations of epilimnetic DOC
and CO, content collected from a small north temperate lake in 2014. After calibrating the model parameters,
we evaluated model performance on a validation portion of the observations, which were collected in 2015.
We performed model analyses in R and provide code at https://github.com/MFEh20o/Hararuk_DA.

2.1. Observed Data

The study lake—Long Lake—is located at the University of Notre Dame Environmental Research Center
(46°13'N 89°32'W). Its area is 8.1 ha, and its mean depth is 3.8 m. The hourglass-shaped lake was divided at
its narrow part by an impermeable curtain (Curry Industries) as a part of an in situ manipulative experiment
that explored the effects of elevated DOC on lake biogeochemistry and biota (P. T. Kelly et al., 2016; Zwart
et al,, 2016). We focused on modeling C dynamics in the treatment portion of the lake (East Long Lake;
area = 3.2 ha), because the surface inlet to the lake enters that basin and therefore we were able to constrain
DOC inputs to that basin well. East Long Lake is a dimictic, mesotrophic (total phosphorus: 15.9 pg L
chlorophyll-a: 7.9 ug L™") lake with a water residence time of 296 days (Zwart et al., 2016, 2017). Light is
attenuated fairly quickly in the water column of East Long Lake (light extinction coefficient: 2.86 m™') due
to the high concentration of DOC (Table 1). The lake is ice-covered annually and thermally stratifies shortly
after ice out, which typically occurs in April or early May.

Water from the epilimnion and hypolimnion was sampled weekly from May to October of 2014 and 2015 and
analyzed for DOC, dissolved inorganic carbon (DIC), and CO, content. We measured DOC on the filtrate of
lake water passing through precombusted (450°C for 4 hr) GF/F filters using a total organic carbon analyzer
(TOC-V; Shimadzu Scientific Instruments). For DIC and CO, sample analysis, we collected water with a 60 mL
syringe and an airtight valve either by submerging the syringe to the sampling depth for shallow samples
(<0.25 m) or by extracting water from a Van Dorn sampler for deeper samples. Upon returning to the lab,
0.1 mL of 4N H,SO,4 was added to the DIC sampling syringes to convert all inorganic carbon to CO,. N, gas
headspace (30 and 10 mL) were added to 30 mL of water in each DIC and CO, syringe, respectively, and
the syringes were shaken vigorously for at least 90 s and then rested for 10 min to allow for headspace
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Table 1

Characteristics of East Long Lake in 2014 and 2015

Variable Description 2014 2015

v Volume, m* 128,700 128,700

A Area, m? 32,000 32,000
Qin Inlet stream discharge, m>/season 30,000 22,000
PPT Precipitation, m3/season 13,000 11,000
Qout Outlet and groundwater discharge, m°>/season 117,000 15,000
PAR Average photosynthetically active radiation, mol photons/mZ/day 37.00 36.62
depth_t Average thermocline depth, m 2.34 246
T Mean epilimnetic temperature, °C 2145 21.80
DOC_stream Average dissolved organic carbon (DOC) concentration in stream, mg/L 66.00 48.00
CO,_stream Average CO5 concentration in stream, mg/L 5.26 498
DOC_precip DOC concentration in precipitation, mg/L 3.20 3.20
DOC_epi Average DOC in the epilimnion, mg/L 10.52 9.86
DOC_hypo Average DOC in the hypolimnion, mg/L 1131 11.98
CO,_epi Mean epilimnetic CO,, mg/L 0.38 0.42
DIC_hypo Mean hypolimnetic DIC, mg/L 6.30 5.96
ph_epi pH of epilimnetic water 5.95 6.10
ph_hypo pH of hypolimnetic water 4.90 530

equilibration. The headspace was analyzed for CO, on a gas chromatograph (Agilent 6890; Agilent
Technologies), and we converted analyzed headspace CO, concentrations to dissolved in the water using
Henry’s law constant. Although CO, was not measured in the hypolimnion, based on pH (Table 1), we
estimated that 90-95% of the measured hypolimnetic DIC was in CO, form (Stumm & Morgan, 1981).

Temperature profiles were recorded every 10 min using a fixed thermistor chain (Onset HOBO Pendants;
Onset Computer Corporation). Incident photosynthetically active radiation (PAR) was also measured every
10 min from a floating platform (Onset HOBO met station, Onset Computer Corporation). Water height in
the inlet stream was measured every 10 min with a pressure sensor (Onset HOBO U20-001-04 Water Level
Data Logger; Onset Computer Corporation) behind a 90° V notch weir (Daugherty & Ingersoll, 1954), and
stream discharge (Q) was estimated using equation (1):

Q:%x Zg><tan<§) xH*/? (1

where g is the acceleration due to gravity (9.81 m? s™"), 8 is the angle of the V notch (90° for our weir), and
H was water height in the V notches. The stage-discharge relationship was confirmed using salt slug
injection, dilution-gauging (Moore, 2005). Stream carbon concentrations (DOC, DIC, and CO,) were linearly
interpolated to discharge measurement frequency and multiplied by stream discharge to estimate inlet
stream carbon flux to the lake. Although there was a weak negative relationship between inlet stream
discharge and DOC concentration, inlet stream DOC concentration was highly autocorrelated (significantly
autocorrelated at weekly sampling intervals); thus, linear interpolation between DOC measurements was
appropriate.

Rainfall was measured hourly with a tipping bucket rain gauge (TE525MM-L; Campbell Scientific, Inc.),
whereas the DOC and CO, concentrations in rainwater were measured twice over the sampling period; there-
fore, the average concentrations were used to estimate DOC and CO, input with rain (Zwart et al., 2016).
Monthly measurements of groundwater discharge showed that the lake perpetually loses water to the regio-
nal aquifer; we used average groundwater discharge values to estimate DOC and CO, flux to groundwater.
Groundwater discharge was estimated using nine in-lake piezometers. Hydraulic head (h; vertical distance
between water level in each piezometer and lake water level) was measured at least monthly and values were
averaged across the sampling period since temporal heterogeneity was low. Hydraulic conductivity (k) was
estimated for each piezometer using slug tests (Bouwer, 1989), and specific groundwater discharge (q) was

estimated using Darcy’s law:
q = kx (g) xa (2)
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where /is the piezometer insertion depth (vertical distance from the top of lake sediments to the top of piezo-
meter screen opening) and a is the piezometer cross-sectional area. All measurements of hydraulic head were
negative, meaning that groundwater was flowing from the lake to the groundwater aquifer (recharge).
Whole-lake groundwater recharge was estimated as the product of the mean of all negative piezometer g
and lake sediment area over which recharge was observed. Groundwater discharge for our study lake was
small as it constituted less than 4% of hydrologic outflow. Outflow of carbon from the lake was estimated
as the product of g, and lake carbon concentration.

Gross primary production was estimated from 10 min dissolved oxygen (DO) measurements (YSI 6600 V2
Sonde, YSI Incorporated) by fitting a maximum likelihood metabolism model to the high-frequency DO cycles
as described by Solomon et al. (2013). More information on methods and frequency of data collection and
estimation is given in Zwart et al. (2016).

2.2. Model Structures

We simulated dynamics of the epilimnetic DOC and CO, as a system of first-order linear differential equa-
tions, which can be summarized as

dax
— =(t) — A(t)X(t 3
= = 10 = ADX(©) 3)
where X(t) is a vector of epilimnetic DOC and CO, pools at the time t; /(t) is the vector of inputs to the DOC and
CO, pools, which included stream, precipitation, and overland flow; and A(t) is the decay and transfer matrix.
The A(t) matrix included the effects of biotic and abiotic factors on DOC mineralization, hydrologic export,
atmospheric exchanges, and fluxes to or from the hypolimnion (depending on the change in thermocline
depth).

The structural assumptions tested in this study were related to the size of X(t), elements of I(t), and A(t). For
instance, we tested whether accounting for varying DOC lability (by modeling both recalcitrant and labile
forms, thus adding a third row to the X(t) vector and changing the other terms of equation (3) accordingly)
improved model performance. We tested whether density differences between stream and epilimnetic
water led to partitioning of inflowing C between the epilimnion and hypolimnion, by modifying elements
of I(t) by a function f(Ap), which allocated less stream C to the epilimntion with increasing density gradient
Ap. We tested the effect of photooxidation by modifying elements of A(t) by a coefficient, which was set to
be a function of photosynthetically active radiation, f(PAR). If the model formulation included entrainment C
fluxes, we explored whether there was a gradient in hypolimnetic DOC and CO, concentrations. If the model
formulation accommodated varying DOC recalcitrance, we modified /(t) to test whether change in the
allochthonous recalcitrance midseason would improve model performance and altered A(t) to test whether
model would improve if recalcitrant DOC contributed to the labile DOC pool during oxidation. Some struc-
tural assumptions were mutually exclusive (e.g., models with one DOC pool versus models with two DOC
pools), but most were not, overall yielding 102 models. For detailed model descriptions and mutual exclu-
sivity of the assumptions please refer to the supporting information.

We split the observations from East Long Lake into two groups: the observations that were collected in
2014 were used to calibrate the models’ parameters and the observations that were collected in 2015 were
used to evaluate the performance of the models with calibrated parameters. Such design helped avoid
overfitting of models, ensuring that the best fitting models captured the signal rather than noise in
the observations.

2.3. Bayesian Inversion

We calibrated the model parameters using a Bayesian Markov chain Monte Carlo technique (Besag et al.,
1995). The prior distributions for the parameters were assumed to be uniform. We sampled from the posterior
parameter distribution by proposing a set of parameters and accepting or rejecting it using the Metropolis
criterion (Spall, 2005). For the first 10,000 iterations the proposal distribution was uniform, afterwards we cal-
culated a parameter covariance matrix, and switched the parameter proposal distribution to the multivariate
normal as in Xu et al. (2006) for the next 490,000 simulations:

Cnew — N(Ck—l , Ck) (4)
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where Cy is defined as in Haario, et al. (2001):

Co k = 10,000

Ce= { sacov(c®,...,ck") k> 10,000 ©)

where s; = 2.38/4/n and n is the number of parameters in a model (Gelman, et al., 1996) and C, is the para-

meter covariance matrix constructed from the first 10,000 iterations. The rates of parameter acceptance were

15-30%, indicating good mixing, which is necessary to arrive at stable posterior distributions. We discarded

the first half of the accepted parameters as a “burn-in” period and sampled 3,000 estimates from the second

half of the accepted parameters to generate the marginal posterior parameter distributions and calculate the
maximum likelihood parameter values.

2.4. Identifying Important Elements of Model Structure

We measured the goodness of model performance by the Akaike information criterion (AIC) (Akaike, 1974),
which was calculated from the model output for 2015 validation data as

NC:anZMC) ©6)

where n is the number of parameters in a model and L is the maximized likelihood function obtained during
Bayesian inversion. With 102 model formulations, identifying processes that consistently improved model
performance was not trivial; therefore, we decided to explore the trends in model performance by represent-
ing AIC values as a function of the presence of processes and particular structural assumptions. We used a
machine learning technique, recursive partitioning by conditional inference (Hothorn et al., 2006), to find
the patterns in AIC values. Unlike many recursive partitioning methods, conditional inference trees do not
overfit the models and are not biased toward covariates with many possible splits. This method is available
in R “partykit” package (Hothorn et al., 2015), which we used to analyze AIC values in our study.

3. Results

3.1. Lake Characteristics

Lake characteristics varied between 2014 and 2015, the calibration and validation years. Year 2015 was a drier
year than 2014: there was 25% less inlet stream discharge, 15% less rainfall, and 87% less outlet and ground-
water discharge during the measurement period (Table 1). There was also 15% (or 506 mm) less snowfall dur-
ing the October 2014 to May 2015 period (which contributed to the 2015 stream discharge) than during the
same period in 2013-2014 (data from the nearest station with available measurements published at https://
www.ncdc.noaa.gov/cdo-web/). It is important to note that drastic differences between 2014 and 2015 water
discharge were partly due to the timing of the measurements: in 2014 we started the measurements shortly
after snowmelt, capturing the resulting outlet discharge without some of the corresponding high inlet dis-
charge. The epilimnion was slightly deeper and warmer in 2015 than 2014. Stream DOC and CO, concentra-
tions were 27% and 5% lower, respectively, in 2015 than in 2014, which together with reduced stream
discharge resulted in 50% and 42% smaller stream DOC and CO, load in 2015. On average, there was slightly
less DOC in the epilimnion in 2015 than in 2014; however, hypolimnetic DOC concentration was slightly
increased. Despite the lower loads, epilimnetic CO, was slightly higher in 2015, whereas hypolimnetic DIC
was slightly lower.

3.2. Important Processes and Structural Assumptions

We calibrated 102 model formulations against the 2014 observations of DOC and CO,, validated the models
against the 2015 DOC and CO, observations, and evaluated their performance against the 2015 data using
AIC. AIC varied widely across the model formulations, indicating that model assumptions were an important
determinant of model performance (Figure 1). The conditional inference tree analysis identified a cluster of
20 model formulations that exhibited significantly better performance than all other models (Figure 1). The
best performing models simulated entrainment, assumed a depth gradient in hypolimnetic CO, concentra-
tions, and modeled epilimnetic DOC and CO, loads as a function of density differences between stream and
epilimnetic water. Within the cluster of 20 best performing models were models that assumed two DOC pools
(i.e., labile and recalcitrant) or just one, presence or absence of photooxidation of DOC, presence or absence
of a depth gradient in hypolimnetic DOC concentration, dependence or independence of labile DOC on
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Figure 1. Processes and structural assumptions that significantly improved models’ Akaike information criterion (AIC).
“Yes” and “no” indicate presence or absence of a process or assumption in a model. The thick gray lines highlight a path
to a cluster of best performing models (Node 9). V in hypoDIC signifies the assumption that hypolimnetic dissolved
inorganic carbon (DIC) concentrations were nonuniform across depth; load x flAd(t)] indicates that stream loads of dissolved
organic carbon (DOC) and CO, are partitioned between the epilimnion and the hypolimnion as a function of the water
density (temperature) difference between the stream and the epilimnion. In the Node 3 two AIC outliers with values 1025.9
and 1041.8 are masked in order to reduce the range of y axes and make differences between the nodes more apparent.

recalcitrant DOC decay, and variable or constant incoming DOC quality. Such variety among the best
performing models indicates that these processes did not affect the dynamics of epilimnetic DOC and CO,
as much as did entrainment, the depth gradient in hypolimnetic CO, concentration, and the density-
dependent partitioning of incoming DOC and CO, between epilimnion and hypolimnion.

3.3. Best Models

3.3.1. Structure and Performance

The four best performing models had similar structures and performance; all four simulated one DOC pool,
and their AlIC ranged from 761 to 771. All four of these models, like the others in the cluster of the top 20 mod-
els, included entrainment, a depth gradient in hypolimnetic DIC, and density-dependent input partitioning of
DOC and CO, load. The differences among the four models were in the presence of photooxidation and the
assumption of a depth gradient in hypolimnetic DOC. The top four models explained a substantial portion of
the variability in the epilimnetic CO, and DOC concentration in the validation data set (76-81% and 63-67%,
respectively; Figure 2). Most observations were within £2 SD of the mean predicted value. For more detailed
description of model assumptions, refer to the supporting information.

3.3.2. Parameter Values

We evaluated whether posterior distributions of the parameters were similar across the models and exam-
ined the models’ ability to reproduce epilimnetic C dynamics in 2015 (the validation year). Most parameters
in the top four models were well constrained relative to their priors (expressed as the x axis range in Figure 3
and Table S1).

The fitted models emphasized that physical processes—including density-dependent partitioning of stream
inputs between the epilimnion and the hypolimnion as well as entrainment of hypolimnetic water—are
important for understanding epilimnetic C dynamics in this system. The calibrated values of kyens (Figure 3¢
and Table S1) were significantly higher than 0, indicating a distinct influence of the density difference
between stream and epilimnetic water on the partitioning of DOC and CO, inputs between epilimnion
and hypolimnion. Calibrated values for u,, an entrainment-related parameter that tested the presence of a
depth gradient in hypolimnetic DOC, converged to 0.85 (Figure 3g and Table S1), which indicated a near-
uniform depth distribution of hypolimnetic DOC. On the other hand, u;, the parameter that tested if there
was a gradient in hypolimnetic CO,, varied from 0.14 to 0.19 among the four best performing models
(Figure 3f and Table S1), which indicated a distinct depth gradient in hypolimnetic CO, concentrations.
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Figure 2. Performance of the best models in representing epilimnetic (first row) CO, and (second row) dissolved organic
carbon (DOC) in 2015. The gray shaded region is model predictions +2 standard deviations; the black dots are observed
data points. Model 2 and 4 exhibited similar performance and are not shown. Model 1 and 3 are similar in structure (one
DOC pool, density gradient-dependent C partitioning between epilimnion and hypolimnion, with entrainment and depth
gradient in hypolimnetic dissolved inorganic carbon) with the exception that Model 3 simulates photooxidation. DOC
concentrations ranged from 0.6 to 1.1 mmol L_1, and CO, concentrations ranged from 0.005 to 0.05 mmol (Il

The low estimates of u, indicated that the CO, concentrations were higher at the bottom than near the top of
the hypolimnion, which is commonly observed in hypoxic lakes (Fahrner et al., 2008; Rinta et al., 2015).

All four of the best models estimated similar total rates of DOC decay, although estimates of the biological
decay (kyo) varied depending on whether decay via photooxidation was also included in the model
(Figure 3). The mean estimate of epilimnetic DOC decay rate at 20°C for the best performing model, Model
1, was 0.007 day’1 with a 95% Cl of 0.005 to 0.009 day™ . The biological DOC decay rates (Figure 3a) varied
across the four best performing models, however that was an artifact of adding compensating processes
and parameters to the model structure. For instance, Model 3 simulated the effect of both light and microbes,
which in turn were implicitly represented through the effect of epilimnetic temperature on DOC decay,
whereas Model 1 simulated microbial DOC decay only. The sum of kyy and kbasephoto in Model 3 was
0.007 day~'—the value of kyo in Model 1 (Figures 3a and 3d), and the effect of temperature and light on
DOC decay was additive, likely due to significant positive correlation between measured epilimnetic
temperature and PAR (r = 0.4, p < 0.001). Base decay in Model 2 was slightly lower than in Model 1 (by 14%),
which would have resulted in higher epilimnetic DOC pools if the DOC transports from the hypolimnion were
not reduced by 14% through the parameter u, (Figures 3a and 3g and Table S1).

Temperature sensitivity of epilimnetic DOC decay predicted by Model 1 was 1.038 (Figure 3b and Table S1),
indicating that a 10°C increase in epilimnion temperature would increase DOC decay rate by 45%. While the
temperature sensitivity increased with the addition of processes and parameters among the four best per-
forming models, there was little change in the estimated rate of DOC decay flux because of compensatory
decreases in the base decay rate.
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Figure 3. Marginal posterior parameter distributions for the four best fitting models described in equations 1-5 and 11-17 in the supporting information, and the
summary of the differences between the four best performing models. Ranges of x axes indicate the boundaries of prior uniform distributions.
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Figure 4. Fate of dissolved organic carbon (DOC) load to epilimnion from late May to early October of 2014 and 2015 simu-
lated by (top) Model 1and (bottom) Model 3. Epilimnetic DOC input was calculated as the sum of exuded fraction of gross
primary product, allochthonous DOC partitioned to epilimnion, and entrained hypolimnetic DOC.

3.3.3. Fate of Allochthonous DOC

All four of the best models produced similar estimates of the fate (mineralization, hydrologic export, or sto-
rage) of DOC inputs to the lake and demonstrated large differences in DOC fate between 2014 and 2015 that
were likely due to interannual differences in precipitation and hydrologic fluxes (Figure 4). In 2014, 88-89% of
incoming DOC was mineralized or exported, whereas only 61% was mineralized or exported in 2015.
Proportionally, in the wetter year (2014), more C was exported than mineralized, whereas more C was miner-
alized than exported in the drier year. Drier conditions in 2015 compared to 2014 led to nearly a twofold
decrease in epilimnetic DOC load; however, despite the smaller load, nearly twice as much of “fresh” DOC
remained in the lake in 2015 (422 kg C) than in 2014 (215-234 kg Q).

4, Discussion

4.1. Physical Versus Biochemical Control

Reliable assessment and prediction of seasonal CO, emissions from lakes depend in part on accurate under-
standing of DOC and CO, dynamics. Models commonly focus on representing biological controls of DOC
and CO, dynamics (Bennington et al,, 2012; Hanson et al., 2011; Pilcher et al,, 2015), often overlooking such phy-
sical effects on C dynamics as inflow partitioning between epilimnion and hypolimnion and entrainment (but
see Vachon, Prairie, et al., 2017). In our analysis, which included assumptions about various physical and biolo-
gical drivers of C dynamics, entrainment of vertically heterogeneous hypolimnetic CO, was the most important
feature of models that represented DOC and CO, dynamics well (Figure 1). Entrainment has been shown to
affect epilimnetic DO and CO, dynamics, mainly by importing anoxic waters rich in CO, into the epilimnion
(Baehr & DeGrandpre, 2004; Jennings et al., 2012). Moreover, entrainment can be a significant source of nutri-
ents to the epilimnion (Maclntyre et al,, 2006) and thus enhance both productivity (Baehr & DeGrandpre, 2004;
Giling et al., 2017) and DOC decay rates (Guillemette et al., 2013; Rdsdnen et al., 2014). The possible entrainment-
driven productivity enhancement was indirectly accounted for in our study, because we used observation-
based gross primary product as model input. However, we did not account for a possible increase in DOC decay
after entrainment of hypolimnetic water, which could have caused underprediction of CO, and overprediction
of DOC in late September after a series of frequent entrainment events from thermocline deepening.

The density gradient between stream and epilimnetic water could form a gravity-driven density current,
which could transport the stream constituents to the hypolimnion (Rueda et al., 2007). The importance of

HARARUK ET AL.

1138



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2017JG004084

density currents for nutrient transport into the hypolimnion has been demonstrated for larger lakes and
reservoirs (Marcé et al.,, 2008; Rueda et al., 2007) but has been overlooked in small lakes. In our analysis
density-driven import of DOC and CO, into the hypolimnion was the second most important predictor of
good model performance in simulating epilimnetic C dynamics. The density difference between colder
stream and warmer epilimnetic water at East Long Lake exceeded 2.5 kg m~2 in summer months, causing
as much as 92% of incoming DOC and CO, to be partitioned to the hypolimnion. Our results emphasize
the importance of accounting for physical processes for accurate representation of C dynamics.

4.2, Base DOC Decay Rates

Our mean estimate of DOC decay at 20°C (0.007 day ™" with 95% Cl of 0.005 to 0.009 day~') was similar to
though slightly higher than the rate reported by Houser (2001) for lakes near our study lake (0.005 day™),
and subsequently used in some carbon budget models (e.g., Hanson et al., 2004, 2011). In contrast, our esti-
mate was on the low end of the range reported for lakes in southern Quebec (0.0057-0.17 day™"; Guillemette
& del Giorgio, 2011). These differences in estimated rates may in part reflect differences in the average lability
of carbon among this diverse set of lakes.

4.3. Temperature Sensitivity of DOC Decay

Continuing greenhouse gas emissions and land use change are projected to increase global average tem-
peratures by another 3.8°C by 2,100 (Pachauri et al.,, 2014), potentially accelerating greenhouse gas emissions
from lakes. It has been commonly assumed that with a 10°C increase in temperature, DOC decay rates will
double (often expressed as Q10 = 2; Hanson et al., 2004), with some studies assuming a nearly threefold
increase in DOC decay rates under similar conditions (Berggren et al., 2010). Recent meta-analysis demon-
strated that temperature sensitivities of DOC decay vary widely across lake ecosystems (Yvon-Durocher
etal,, 2012). The data-informed mean temperature sensitivity of DOC decay in East Long Lake was lower than
the means reported in the literature (Hanson et al., 2004, 2011; Miller et al., 2009). During cooler periods, tem-
perature did not inhibit DOC decay as expected from the mean value across various ecosystems, and during
warmer periods, increases in DOC decay rates were below the average estimate obtained from in situ lake
respiration measurements (Yvon-Durocher et al., 2012). All other conditions being equal, a 3°C increase in
average epilimnetic temperature from the current 21.4°C would result in 12 to 20% smaller response in
DOC decay than would be expected based on existing literature.

A possible reason for lower temperature sensitivities of DOC decay at Long Lake could be higher average
temperatures at our site than in the studies that reported higher Q10s. A negative relationship between
respiration Q10 and average temperature has been observed in terrestrial ecosystems (Chen & Tian, 2005;
Peng et al.,, 2009); hence, we tested this hypothesis by calculating in situ Q10s of lake pelagic respiration
reported in Yvon-Durocher et al. (2012) and relating them to the average temperatures of the measurement
periods (Figure 5b). Data from Yvon-Durocher et al. (2012) yielded a negative exponential relationship
between Q10s and the average temperatures. Moreover, the regression coefficients were remarkably close
to the ones describing the relationship between soil respiration Q10s and temperature (Figure 2 in Chen &
Tian, 2005) in temperate and boreal regions. The Q10 for East Long Lake obtained from the equation in
Figure 5b (given that the average epilimnetic temperature at East Long Lake during the measurement period
was 21.4°C) was 1.46 and almost identical to the Q10 obtained in this study, which was 1.45.

4.4. Photodegradation of DOC

There is substantial uncertainty in the literature about photomineralization rates and their importance for
total DOC mineralization (Cory et al., 2014; Molot & Dillon, 1997; Vachon et al., 2016). In this study photode-
gradation rates ranged from 0.0034 to 0.0045 day’1 with a seasonal average of 0.004 day’1 for the period
from late May to October, which was within the range reported in the literature (0.0009-0.097 day”;
Molot & Dillon, 1997; Porcal et al., 2014; Vachon et al., 2016). Photodegradation contributed around 50% to
total DOC mineralization rates, ranging from 42% during the warmer months to 60% in the days with the
lowest epilimnetic temperatures, which was also within the range reported in the literature (14-95%;
Granéli et al., 1996; Molot & Dillon, 1997; Vachon et al., 2016).

Although our values for photodegradation rates and their contribution to total DOC mineralization rates
agree with some values reported in the literature, we are cautious in interpreting them as true

HARARUK ET AL.

1139



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2017)G004084

a) b)

log(Q10) =-0.0789 x T + 2.0651, p=0.0359

\5‘ 7o) Berggren et al. (2010)
€ o Yvon-Durocher et al. (2012)
= This study
=}
2 o
= —
B w0 | =
g - g
2] j2]
o < | o
5 -
E w
g o
=
L o .
o T T i | T T T T T T T
15 20 25 30 14 16 18 20 22 24 26
epilimnion temperature, degrees C mean temperature, degrees C

Figure 5. (a) Temperature sensitivity of dissolved organic carbon decay expressed as actual decay rate normalized by the
decay rate at T = 20°C and (b) dependency of in situ lake Q10s to temperature. The green line represents maximum
likelihood estimates from this study (shaded region is 1 SD), the red line represents temperature sensitivity used in
Berggren et al. (2010), and the blue line represents temperature sensitivities calculated from meta-analysis by
Yvon-Durocher et al. (2012), with shaded regions representing +1 SD of Q10s calculated for in situ lake pelagic respiration
measurements. Relationship in (b) was derived from calculating in situ Q10s for lake pelagic respiration from data in
Yvon-Durocher et al. (2012).

photomineralization rates. Our caution stems from the lack of significant improvement in model
performance that we observed when including photooxidation in the models (Figure 1) and from
equifinality in model performance. The equifinality was evident from the additivity of biodegradation
and photodegradation rates (see section 3.3.2) and the equal split of mineralized DOC between
photodegradation and biodegradation with nonadditive uncertainties (Figure 4), which was likely due to
significant positive correlation between PAR and epilimnetic temperature (r = 0.4, p < 0.001). Accurately
representing photodegradation is important when simulating C dynamics at hourly timesteps: lake
respiration may be overestimated at night, for example, by Model 1, when the temperature coefficient also
implicitly accounts for the light effect on DOC decay. It is also particularly important to accurately capture
photodegradation rates in northern lakes, which may have substantial rates of CO, efflux despite low
temperatures (Cory et al., 2014; Solomon et al.,, 2013). A potential way to estimate photomineralization
rates more reliably would be to extend the measurement season into spring and fall to include C
dynamics under low temperatures but relatively high PAR conditions and repeat the calibration analysis
with the new data. Alternatively, photodegradation rates in East Long Lake could be constrained via in situ
incubation experiment as in Molot and Dillon (1997).

4.5. DOC Recalcitrance

DOC is composed of many molecules of varying lability (del Giorgio & Davis, 2003; Guillemette & del Giorgio,
2011; Middelburg et al., 1993), and many aquatic C models have sought to incorporate this heterogeneity by
including two or more DOC pools of differing lability. In contrast, our study showed that partitioning the DOC
pool into labile and recalcitrant fractions did not yield significant improvements in model fits to the observed
DOC and CO, (Figure 1). The disagreement between our results and the literature is likely due to modeling
and observing different systems: long-term incubation versus in situ lakes. Indeed, if we simulate a DOC incu-
bation experiment using a model with one and two DOC pools, the DOC decay dynamics will be slightly dis-
tinct between the two models. The two-pool model will have two stages of DOC decay: a rapid initial stage
and a slower later stage, which will not align with the exponential decay pattern of the one-pool model.
Models with one and two DOC pools also differed in simulating DOC fate, with two-pool models simulating
slightly higher mineralization that resulted from the rapid initial decay of the labile DOC fraction. At East Long
Lake, the estimated initial fraction of labile DOC and labile fraction of DOC loads were small, 10% and 25%,
respectively; hence, the differences in short-term fates of incoming DOC were small. We speculate that for
lakes with higher labile DOC inputs, the differences between one and two DOC pool models will be more pro-
nounced, and the two-pool model may perform significantly better.

5. Conclusion

Our formal data assimilation approach allowed us to evaluate a diverse set of hypothesized drivers of lake
carbon biogeochemistry and the physical, chemical, and biological interactions among these drivers. By
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leveraging process models and data collected at the ecosystem scale, we were able to identify system-scale
processes that cannot be captured in traditional incubation studies, including the importance of hypolim-
netic entrainment and density-driven sinking of terrestrial hydrologic loads, as most important for predicting
seasonal dynamics of lake carbon biogeochemistry. Although system-scale physical processes were most
important, temperature dependence of carbon decomposition was also present in our best models.
However, model calibration revealed a weaker sensitivity of organic matter decay to temperature than is
commonly assumed. Application of these approaches in a comparative framework across regions will be
an important next step for evaluating the generality of our findings, but our work indicates great promise
for reliable forecasting of intraannual lake carbon biogeochemistry dynamics.
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