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Abstract
Lakes are biogeochemical hotspots on the landscape, contributing significantly to the global carbon cycle

despite their small areal coverage. Observations and models of lake carbon pools and fluxes are rarely explicitly
combined through data assimilation despite successful use of this technique in other fields. Data assimilation
adds value to both observations and models by constraining models with observations of the system and by
leveraging knowledge of the system formalized by the model to objectively fill observation gaps. In this article,
we highlight the utility of data assimilation in lake carbon cycling research by using the ensemble Kalman filter
to combine simple lake carbon models with observations of lake carbon pools and fluxes. We demonstrate that
data assimilation helps reduce uncertainty in estimates of lake carbon pools and fluxes and more accurately esti-
mate the true carbon pool size compared to estimates derived from observations alone. Data assimilation tech-
niques should be embraced as valuable tools for lake biogeochemists interested in learning about ecosystem
dynamics and forecasting ecosystem states and processes.

Lakes are areas of intense carbon (C) processing. Current
estimates of C exported annually from terrestrial ecosystems
to inland waters are on par with annual global land net eco-
system production (Randerson et al. 2002; Drake et al. 2017).
Nearly 50% of this C is transferred to the atmosphere and
about 20% is buried, forming a sediment pool that is now
larger than the remainder of the terrestrial biosphere
(e.g., land plants and soils; Tranvik et al. 2009; Cole 2013).
Clearly, lakes play an integral role in global C cycling, and it is
important to understand the drivers of magnitudes and vari-
ability of C pools and fluxes.

Observations of lake C pools and fluxes have fundamentally
advanced our understanding of lake C cycling. For example,
Cole et al. (1994) demonstrated that a vast majority of lakes are
supersaturated with CO2, contributing significantly to regional C
cycles as net sources of C to the atmosphere. Long-term data

have revealed that dissolved organic carbon (DOC) concentra-
tion has been increasing in numerous lakes, initiating a wave of
research on the impacts of elevated DOC on lake ecosystem
functioning (Monteith et al. 2007). Additionally, through
advances in sensor technology, observations of lake metabolic
processes have been shown to be meaningfully heterogeneous
both within and across lakes (Coloso et al. 2008; Van de Bogert
et al. 2012; Solomon et al. 2013; Obrador et al. 2014; Giling
et al. 2017).

Models are useful for exploring the implications suggested
by observations despite that they simplify complexities of real-
ity and focus on key processes regulating system dynamics.
Akin to the observational studies mentioned above, several
models have also advanced our understanding of lake C
cycling. For example, a scaling study demonstrated that lakes
are an important component of the global C cycle (Cole
et al. 2007), justifying the inclusion of lakes in the Intergovern-
mental Panel on Climate Change’s Fifth Assessment Report on
global C budget (IPCC 2013). A dynamical modeling study
demonstrated that allochthonous sources of C can support a
large portion of secondary production in lakes through utiliza-
tion of low-molecular–weight compounds (Berggren et al.
2010). Additionally, a study using first principles of physical
limnology showed that gas exchange between lakes and the
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atmosphere was dominated by convective mixing in small lakes
and wind shear mixing in larger lakes (Read et al. 2012).

Despite the significant advances in lake C cycling research
highlighted above, both observations and models have weak-
nesses that can hinder their utility. Observations are snapshots
of dynamic pools and processes, which often require gap filling
in order to be appropriately scaled across space and time. For
example, infrequent observations of lake CO2 fluxes or concen-
trations may miss important periods of CO2 emissions, such as
during or after extreme precipitation events (Ojala et al. 2011;
Vachon and del Giorgio 2014). Models are simplified representa-
tions of reality and can produce errors due to misrepresentation
or omission of important processes and uncertainties in parame-
terization owing to data limitations. For instance, the choice of
gas flux model formulation can substantially affect the estimates
of lake metabolic balances and CO2 emissions when models are
not constrained with observations (Dugan et al. 2016).

Data assimilation is a framework used to overcome the limi-
tations of models and observations while also capitalizing on
their strengths. Data assimilation adds value to models by
informing model errors and parameters with observations of
the system and adds value to observations by leveraging
knowledge of the system contained in the model to fill infor-
mation gaps. Sequential data assimilation techniques, like
ensemble Kalman filter (EnKF), iteratively incorporate infor-
mation from the observations into our understanding of the
system, updating model states and parameter estimates, which
have been calibrated with older observations, as new observa-
tions are collected and assimilated. Unlike traditional model
calibration, data assimilation requires explicit accounting of
model and observation uncertainty so that uncertainty can be
propagated into the forecasting step. Iteratively informing
models with observations using data assimilation techniques
has improved understanding of a system and facilitated fore-
casting its states in fields such as meteorology and terrestrial
ecology (Dee et al. 2011; Niu et al. 2014). However, data
assimilation techniques are rarely used in aquatic biogeochem-
ical research, which, given the amount of observations and
hypotheses about controls of C dynamics, suggests a missed
opportunity to combine complementary information from
observations and models of these important ecosystems.

In this article, we demonstrate benefits of data assimilation
for aquatic C cycling research and show how data assimilation
can reveal important ecosystem processes that are not evident
from observations or models alone. We use the EnKF, a
sequential data assimilation technique often used in meteorol-
ogy and hydrology, to combine simple lake C process models
with real and synthetic observations of lake C pools and
fluxes. Using real observations, we show that the EnKF can
estimate relevant ecosystem parameters that are hard to mea-
sure or were not measured at high temporal frequency
(e.g., turnover rate of DOC) and that it significantly reduces
uncertainty in lake C pools and fluxes compared to observa-
tion uncertainty. Using synthetic observations, we also show

that the EnKF technique estimates the true state of the system
more accurately than estimates derived solely from observa-
tions, even when the model structure is a simplification of the
true process. By highlighting these benefits, we encourage lake
biogeochemists to take advantage of data assimilation tech-
niques like the EnKF; as such, we explain in detail this data
assimilation technique (EnKF) and provide open-source R code
of the model in order to reduce analytic barriers.

Materials and procedures
Dataset description

We used both synthetic and real observations of lake C
pools and fluxes to demonstrate the value of data assimilation
for aquatic biogeochemical studies. The observations of lake C
pools and fluxes assimilated into our lake C process models
were from East Long Lake during the open-water period in
2014 and included C loading, export, gross primary produc-
tion (GPP), and in-lake C pool estimates. East Long Lake is
located at the University of Notre Dame Environmental
Research Center (46�130N 89�320W), and it has an area of
3.2 ha and mean depth of 4 m. East Long Lake is a dimictic,
mesotrophic (total phosphorus: 15.9 μg L−1; chlorophyll a:
7.9 μg L−1) lake with an average water residence time of 296 d
(Zwart et al. 2016, 2017). Light is attenuated fairly quickly in
the water column (light extinction coefficient: 2.86 m−1) due
to the high concentration of DOC. The lake is ice-covered
annually and thermally stratifies shortly after ice out, which
typically occurs in April or early May. A full description of the
data collection methodologies was provided by Zwart
et al. (2016, 2017). The description of the synthetic lake C
pools follows our description of the lake C model below.

Lake carbon dynamics model
We modeled epilimnetic DOC and CO2 pools as a function

of inputs (e.g., inlet stream, precipitation, and atmospheric
flux), within-lake processing (e.g., respiration and primary pro-
duction), entrainment, and outputs (e.g., outlet stream and
atmospheric flux) at a daily time scale. For model simplicity,
we considered a single inorganic C pool consisting of CO2,
because, in soft waters such as East Long Lake, the net mass
exchange between CO2 and the other inorganic forms (bicar-
bonate + carbonate ions) is small and because including car-
bonate equilibria dynamics in the model structure had very
little impact on estimates of the DOC and CO2 pools. For a
detailed description of a model version that includes carbon-
ate equilibria dynamics as well as model results, see the Sup-
porting Information and the dic_co2_model branch of our
Github repository (https://github.com/jzwart/lake_C_EnKF/
tree/dic_co2_model). Although our daily time step model does
not explicitly account for diel variation in CO2, our assimi-
lated observations were collected in the morning (between
10:00 and 11:40 h) and likely represent a reasonable average
concentration for the day since this time period is a balance
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between peak net CO2 consumption (midday) and peak net
CO2 production (nighttime; see Supporting Information
Fig. S6). For DOC, we considered either a single homogenous
pool or separate fast and slow decomposing pools. We used
observations of the state variables (DOC and CO2) and forcing
variables (e.g., hydrologic inputs and outputs and tempera-
ture) to fit the model by assimilating synthetic or real observa-
tions to inform parameters describing the respiration rate of
DOC or the partitioning of inflowing DOC between fast and
slow decomposing pools.

Limnologists have dealt with the nature of DOC in many
ways, from treating DOC as a black box (one DOC pool) to
model molecular formula for each compound, as well as a con-
tinuum of complexity between these two extremes. Embracing
DOC chemical and reactivity diversity has led to an under-
standing of how terrestrial C is assimilated into lake secondary
production (Berggren et al. 2010), how hydrology influences
lake DOC reactivity and CO2 production (Vachon et al. 2016),
and interactions between bacterial community composition
and DOC degradation (Logue et al. 2016). We balance the het-
erogeneity of DOC compounds and reactivity with model
computational efficiency by using a simple two-compartment
representation of variation in DOC reactivity (two DOC pools)
in our lake C process model and compare the model output
with our observations of CO2 and DOC when assimilating real
observations. When assimilating synthetic observations, we
represent DOC either as a single homogenous pool or separate
fast and slow decomposing pools depending on the complex-
ity of the model (See Synthetic Observation Simulation and
Assimilation section). Representing DOC as a single pool or
two pools potentially produces different dynamics of total
DOC decay (turnover rate multiplied by DOC pool) as the
one-pool model turnover rate constant is independent of DOC
pool size, while the two-pool model turnover rate is a function
of the relative size of the recalcitrant and labile DOC pools. In
the one DOC pool model, we estimated the turnover rate of
DOC (standardized to 20 �C, d20) using the EnKF. In the two
DOC pool model, we fixed the turnover rate constants of the
fast and slow decomposing pools due to equifinality when
estimating both pool’s respiration rates, and instead estimated
the partitioning of inflowing DOC between fast and slow
decomposing DOC pools (fracFast). We calculated the emer-
gent turnover rate of the total DOC pool in the two DOC pool
model as the pool-weighted average, which allowed for direct
comparison to the turnover rate of DOC estimated in the one
DOC pool model.

We ran the lake C process models at a daily time step to
estimate either two (total DOC [DOC] and CO2; unit = mol C)
or four state variables (slow decomposing DOC [DOCs], fast
decomposing DOC [DOCf], total DOC [DOC], and CO2; unit =
mol C). The lake C dynamics were expressed as:

xt+1 ¼Btxt +Ctut ð1Þ

where xt was either a 2 × 1 or 4 × 1 vector of lake C pools at
time t:

xt ¼ CO2, t

DOCt

� �
; forModels 2−5 ð2Þ

xt ¼
CO2,t

DOCs
t

DOCf
t

DOCt

2
664

3
775; forModels1,6−9 ð3Þ

Bt was either a 2 × 2 or 4 × 4 matrix (unit = fraction d−1)
describing C pool-dependent processes including hydrologic C
export downstream, vertical entrainment, C decay, and atmo-
spheric losses. DOC and CO2 stream and groundwater export
from the lake was estimated as the quotient of measurements
of stream and groundwater discharge out (Qout; unit = m3 d−1)
and epilimnetic volume (V; unit = m3). CO2 efflux to the
atmosphere was estimated as the quotient of gas piston veloc-
ity for CO2 (k; unit = m d−1; modeled from Vachon and Prairie
[2013]) and epilimnetic depth (zMix; unit = m). Vertical loss
of DOC and CO2 to the hypolimnion if zMix decreases (Loss =
1 if zMix decreases, otherwise 0) estimated as the quotient of
vertical entrainment water volume (Vert; unit = m3 d−1) and
V (Vachon et al. 2017). The DOC transformation into CO2

was estimated as the respiration of either the total DOC pool
into CO2 (d20; unit = d−1; estimated using the EnKF described
below) or both the slow (dslow,20 = 0.004 d−1) and fast
(dfast,20 = 0.3 d−1) DOC pools into CO2. We fix dslow,20 and
dfast,20 and estimate the partitioning between inflowing DOC
into fast and slow decomposing DOC pools (fracFast; unit =
fraction; Eq. 9) due to equifinality when estimating both
dslow,20 and dfast,20. d, dslow, and dfast were standardized to 20�C
using the mean epilimnion temperature at time t (EpiT; unit =
�C) and Eq. 4 to take into account temperature influence on
the mineralization rate of DOC (Holtgrieve et al. 2010; Solo-
mon et al. 2013):

dt ¼ d20, t ×1:047 EpiTt −20ð Þ ð4Þ

Bt ¼
1−

Qout, t

Vt

� �
−

kt
zMixt

� �
−

Losst ×Vertt
Vt

� �
dt

0 1−dt −
Qout, t

Vt

� �
−

Losst ×Vertt
Vt

� �
2
664

3
775; forModels 2−5 ð5Þ
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Ct was either a 2 × 6 or 4 × 7 matrix and ut was either a
6 × 1 or 7 × 1 vector describing pool-independent processes
including atmospheric influx of C, vertical entrainment, and
C loads. The elements in the resulting matrix product of Ctut

had unit of mol C d−1. Atmospheric CO2 ([atmCO2]; unit =
mol C m−3) influx to the lake was estimated as the quotient
of gas piston velocity for CO2 (k; unit = m d−1) and epilim-
netic depth (zMix; unit = m), where [atmCO2] is 400 ppm con-
verted to mol C m−3. CO2 and DOC loading (loadCO2 and
loadDOC, respectively; unit = mol C d−1) to the lake was esti-
mated from stream, groundwater, precipitation, and overland
flow measurements multiplied by the fraction that enters the
epilimnion (fracEpi; estimated using the EnKF described
below). The fraction of loadDOC that enters the fast-
decomposing DOC pool (fracFast; unit = fraction) was esti-

mated using the EnKF described below. Vertical entrainment
of DOC and CO2 from the hypolimnion if zMix increases
(Gain = 1 if zMix increases, otherwise 0) was estimated as the
product of vertical entrainment water volume (Vert; unit =
m3 d−1) and hypolimnic CO2 (hypoCO2; unit = mol C m−3) or
DOC (hypoDOC; unit = mol C m−3) concentration (fraction of
hypolimnion DOC pool that is fast decomposing set to 0.01,
fracFast0; Guillemette and del Giorgio 2011; Guillemette
et al. 2013; Mostovaya et al. 2016). The loss of CO2 to primary
production accounting for the fraction of GPP that is respired
quickly was set to 0.85 (RGPP; unit = fraction; Quay et al. 1986;
Cole et al. 2002; Hanson et al. 2004). Finally, DOC exudate
from phytoplankton production included both slow (Exudes =
0.03) and fast (Exudef = 0.07) decomposing DOC fractions

from phytoplankton exudate or the sum of the two, termed
Exude (Baines and Pace 1991; Hanson et al. 2004).

Ct ¼
kt

zMixt
1 −GPPt 0 0 hypoCO2, t

0 0 0 GPPt 1 hypoDOCt

2
4

3
5; forModels2−5

ð7Þ

ut ¼

atmCO2½ �×Vt

loadCO2, t × fracEpi
1−RGPP, t

Exudet
loadDOCt × fracEpi

Gaint ×Vertt

2
6666664

3
7777775
; forModels 2−5 ð8Þ

ut ¼

atmCO2½ �×Vt

loadCO2, t × fracEpi
1−RGPP, t

Exudest
Exudeft

loadDOCt × fracEpi
Gaint ×Vertt

2
666666664

3
777777775
; forModels 1,6−9 ð10Þ

Ensemble Kalman filter
We used the EnKF (Evensen 1994) to estimate the states of

the lake system xt and the parameters (either d20,t and fracEpit
or fracFastt and fracEpit) from Eq. 1. EnKF uses an iterative
two-step process to estimate the state of a system: a forecast

Bt ¼

1−
Qout, t

Vt

� �
−

kt
zMixt

� �
−

Losst ×Vertt
Vt

� �
dslow, t dfast, t 0

0 1−dslow, t −
Qout, t

Vt

� �
−

Losst ×Vertt
Vt

� �
0 0

0 0 1−dfast, t −
Qout, t

Vt

� �
−

Losst ×Vertt
Vt

� �
0

0 1−dslow, t −
Qout, t

Vt

� �
−

Losst ×Vertt
Vt

� �
1−dfast, t −

Qout, t

Vt

� �
−

Losst ×Vertt
Vt

� �
0

2
6666666666664

3
7777777777775

;

forModels 1,6−9

ð6Þ

Ct ¼

kt
zMixt

1 −GPPt 0 0 0 hypoCO2, t

0 0 0 GPPt 0 1− fracFastt hypoDOCt × 1−fracFast0, t
� �

0 0 0 0 GPPt fracFastt hypoDOCt × fracFast0, t
0 0 0 GPPt GPPt 1 hypoDOCt

2
666664

3
777775
; forModels 1,6−9 ð9Þ

4
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step, during which the state of a system (DOC and CO2) is pre-
dicted by a model (Eq. 1), and an update step, during which
the state variables and parameters are adjusted using observa-
tions (DOC and CO2) and the Kalman gain matrix. The EnKF
uses a Monte Carlo sampling technique to produce an ensem-
ble of model states and parameters, which allows us to repre-
sent the error statistics in the model estimates as a sample
covariance matrix. In our study, we set ensemble size to
100 (Ne = 100), as such a number of ensemble members has
been shown to be sufficient in previous studies (e.g., Gao
et al. 2011; Huang et al. 2013), and through a sensitivity anal-
ysis, we observed little effect of ensemble size on model perfor-
mance (Ne = 50–1000). We implemented the EnKF algorithm
as described by Gao et al. (2011).

We generated the initial 100 ensemble members for the
parameters by drawing from a normal distribution with a mean
and standard deviation based on literature values and previous
research conducted on East Long Lake (Zwart et al. 2016, 2017)
for the fraction of inflowing DOC loaded into the epilimnion
and the turnover rate of the total DOC pool standardized to
20�C or the fraction of loaded DOC that is fast decomposing
(fracEpi, mean = 0.1, SD = 0.04; d20, mean = 0.007, SD =
0.0038; fracFast, mean = 0.30, SD = 0.099). We also estimate a
covariance inflation factor (σ; mean = 1, SD = 1.2) using the
EnKF, which prevents the model from becoming overconfident
in its predictions and ignoring assimilated observations, also
known as “filter divergence” (Li et al. 2009; Dietze 2017). Filter
divergence is especially important to consider in sequential data
assimilation as process error becomes reduced as more data are
assimilated through time. Ideally, the model should be able to
predict abrupt changes in the modeled ecosystem; however, if
certain ecosystem dynamics are unknown or are not explicitly
included in the model structure, it may be best to inflate pro-
cess variance to anticipate unknown ecosystem changes not
captured by the model (Anderson 2007). Other options include
using Bayesian Model Averaging which allows for different
model structures to be run in a forecast and weighted based on
their uncertainty (Hipsey et al. 2015; Dietze 2017).

The initial values for model state variables in each ensemble
member were drawn from a normal distribution of CO2 and
DOC with the mean set to the earliest observations of CO2 and
DOC and standard deviations described below (Eq. 18). If esti-
mating four C states, the initial DOCf pool was set to 1% of the
initial DOC pool for each ensemble while initial DOCs was the
remainder (Guillemette and del Giorgio 2011; Guillemette
et al. 2013; Mostovaya et al. 2016). We concatenated parameter
estimates (p) and state estimates (x) into one vector (y), and we
used this vector for forecasting and updating in the EnKF.

yi,t ¼
pi,t
xi,t

� �
ð11Þ

where i was the ith ensemble member of the model. pi,t was a
3 × 1 vector containing the parameter estimates (either d20,t,

fracEpit, and σt or fracLabilet, fracEpit, and σt) and xi,t was either
a 2 × 1 or 4 × 1 vector containing the state estimates (either
CO2 and DOC or CO2, DOCs, DOCf, and DOC). The y vector
was propagated through time using our simple C model
(Eq. 1) and parameter estimates from the previous time step,
where the forecasted y vector was denoted as yf.

yf
i,t ¼

pi,t−1
xi,t

� �
ð12Þ

When one or more observations were available at a time
step t, the y vector was updated using a Kalman gain. The
updated y vector (yu) was expressed as:

yu
i,t ¼yf

i,t +Kt xobs
t −Htyf

i,t
� �

i¼1,2,…Neð Þ ð13Þ

where xobs
t was a 2 × 1 vector of observation data (CO2 and

DOC); Ht was either a 2 × 5 or 2 × 7 measurement operator
matrix with 1s when observations of C pools were available
and 0s otherwise.

Ht ¼ 0 0 0 CO2,obs,t 0
0 0 0 0 DOCobs, t

� �
; forModels2−5 ð14Þ

Ht ¼ 0 0 0 CO2,obs, t 0 0 0
0 0 0 0 0 0 DOCobs, t

� �
; forModels 1,6−9 ð15Þ

Kt was the Kalman gain weighting matrix modified by the
estimated covariance inflation, which was expressed as:

Kt ¼ 1
Ne−1

σt ×ΔYtΔYt
>H>

t
1

Ne−1
σt ×HtΔYtΔYt

>H>
t +Rt

� �−1

ð16Þ

where Rt was a 2 × 2 observation error covariance matrix and
expressed as:

Rt ¼ VarianceCO2,obs,t 0
0 VarianceDOCobs, t

� �
ð17Þ

We model C pools to propagate different sources of obser-
vation error (variance) including error in C concentration
(CO2 or DOC) and epilimnetic volume. These sources of error
were propagated using the formula:

Variance Ct ¼ Ct ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv C½ �t2 + cvLAt

2 + cvzMixt
2

q� �2

ð18Þ

where VarianceCt was C pool variance at time t; Ct was the C
pool observation; and cv[C]t, cvLAt, and cvzMixt were the coef-
ficient of variation (CV) for C concentration, lake area, and
epilimnetic depth, respectively. Standard deviations for obser-
vations of DOC (0.106 mol C m−3) and CO2 (0.00503 mol C
m−3) concentrations were estimated using 8 DOC and 12 CO2
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replicates from a sampling time point on 30 July 2014 from
the adjacent lake basin (West Long Lake, description in Zwart
et al. [2016]). Standard deviation in lake area was conserva-
tively set to 4000 m2, and standard deviation in the epilim-
netic depth was conservatively set to 0.25 m based on the
accuracy of the USGS National Hydrography Dataset and
Onset HOBO temperature pendants (Onset Computer Corpo-
ration), respectively.

ΔYt in Eq. 16 was either a 5 x Ne (Models 2–5) or 7 x Ne

(Models 1 and 6–9) matrix of all ensemble deviations from the
mean of estimated states and parameters at time t (yt ),
expressed as:

ΔYt ¼ Δy1,t…Δyi,t…ΔyNe,t

h i
ð19Þ

where the ith column of ΔYt was:

Δyi,t ¼ yi, t −yt ð20Þ

All modeling and subsequent analyses were conducted
using the R statistical package (R Core Team 2016). The devel-
opment code is available on GitHub (https://github.
com/jzwart/lake_C_EnKF), and the dataset and code used to
generate results in this manuscript were from v1.0 of this
repository (http://doi.org/10.5281/zenodo.1322130).

Evaluating EnKF performance with real observations
When assimilating real observations, we withheld every

other observation from assimilation to be used to evaluate
model performance. In order to evaluate the model perfor-
mance, we compared model-estimated states to the nonassimi-
lated observed data using root mean squared error (RMSE) and
coefficient of determination (r2). We estimate the uncertainty

in lake C states by calculating the CV of the ensemble state
estimates and observations across the model run.

Synthetic observation simulation, assimilation, and
evaluation

While we can evaluate the performance of simple lake C
process models by comparing their output with observations,
we cannot be sure that these models fully capture the “true”
underlying ecosystem processes. Given that the true underly-
ing process will never be fully represented by any model
under consideration, should we accept data assimilation
results as improved estimates of the truth or disregard them
as artifacts of the model structure and instead trust our obser-
vations? To explore this question, we created “true” ecosys-
tem states of DOC and CO2 (hereafter termed true states)
using a known process model of the ecosystem (hereafter
termed true process). We then simulated the collection of
observations on these true states (hereafter termed synthetic
observations), and assimilated the synthetic observations of
DOC and CO2 into eight different process models ranging
from the true process to highly simplified representations of
the true process (Fig. 1). This type of analysis is akin to
observing system simulation experiments (Masutani
et al. 2010), which aim to identify how many and what types
of observations are needed to reach a desired model perfor-
mance given limited research funds. As our data collection
had already occurred, the primary goal of our synthetic data
assimilation experiment was to show how data assimilation
can combine information from observations and simplified
models (which are imperfect representations of the true
states and true process, respectively) to produce estimates of
C pools that are closer to the true C pools than direct obser-
vation of these pools.

To create the true states, we considered the true process to
be the two DOC pool model structure described above (Eqs. 1,

Fig. 1. Schematic of how the EnKF was used in two different analyses using real observations and synthetic observations. In our first analysis, we used
real observations to demonstrate that the EnKF can estimate relevant ecosystem parameters and significantly reduce uncertainty in lake carbon pools and
fluxes compared to observation uncertainty. In our second analysis, we generated true states using a true process model (Model 9; Table 1), and then
sampled these true states to create synthetic observations which were assimilated into simplified versions of the true process. For this analysis, we showed
that the EnKF technique improved estimates of the true state of the system compared to estimates derived solely from observations, even when the
model structure was a simplification of the true process.
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3, 6, 9, and 10), with an additional complexity of the turnover
rate of DOC (d, dslow, and dfast) following Michaelis–Menten
kinetics (dMM) as has been used to describe DOC decay previ-
ously (e.g., Søndergaard and Middelboe 1995).

dMM, t ¼
dt × 12×DOCt

Vt

K + 12×DOCt
Vt

� � ð21Þ

where K is the half-saturation constant, set to 4 g m−3 for the
total DOC pool. We chose to add dMM to the true process
model in order to increase the number of simplified models of
DOC decay that we could consider, which included either one
or two DOC pools, temperature-dependent or temperature-
independent DOC decay, and Michaelis–Menten decay kinetics
or not (Table 1, Models 2–9). We created the true states of in-
lake C pools using the true process model (Model 9 in Table 1)
with a single parameterization and forcing data from the data-
set described in Zwart et al. (2016, 2017) (e.g., loading of DOC
and CO2, hydrologic outflow, and primary production). We cre-
ated synthetic observations of the true states by sampling from
a normal distribution with the true states as the mean and stan-
dard deviations set to our observation error (Eq. 18), thereby
mimicking DOC and CO2 sampling from our simulated lake.

Sampling protocol (e.g., sampling interval and sample repli-
cates) may influence the model performance during data assimi-
lation as process models gain more information as more
observations are assimilated. Therefore, we additionally com-
pared each model’s performance across varying sampling proto-
cols, which included varying sampling interval (1–35 d
sampling intervals) and sample replicates (1–6 replicates for
each sample time point) of the true states. We assimilated syn-
thetic observations using each model across all combinations of
these sampling protocols and calculated the mean model

performance by running each model 100 times for each sam-
pling protocol to reduce the influence of random draws of ini-
tial C pools and random sampling of the true states on model
performance.

We asked whether the data assimilation estimates or syn-
thetic observations better capture the true states by comparing
states estimated by data assimilation as well as the synthetic
observation states to the true states using RMSE (termed DA
RMSE and Obs RMSE, respectively). We regressed the differ-
ence in Obs RMSE and DA RMSE against process model struc-
ture, sampling interval, and sample replicates to ask whether
sampling protocol and/or model structure significantly influ-
enced data assimilation performance compared to observation
performance in estimating the true ecosystem state.

Results and discussion
Real observation assimilation

Using real observations, we captured East Long Lake DOC
and CO2 dynamics well by assimilating data with a two DOC
pool model using the EnKF (Fig. 2A,B; CO2 r2 = 0.41, CO2

RMSE = 0.074 g C m−3, DOC r2 = 0.24, DOC RMSE = 0.65 g C
m−3). Our simple representation of the DOC reactivity contin-
uum produced dynamic estimates of the turnover rate of
DOC, as the turnover rate of DOC standardized to 20�C (d20)
ranged from 0.0054 to 0.0153 d−1 and responded to hydro-
logic loads of DOC. Lakes which have short hydrologic resi-
dence times (HRTs), and which therefore are fairly
continuously resupplied with fresh allochthonous inputs,
should have higher emergent mineralization rates of the dis-
solved resource, as a greater proportion of the emergent min-
eralization rate will be derived from mineralization of fast
decomposing resources (Jones et al. 2018). In these low HRT
lakes, this can be thought of as a sustained reactivity

Table 1. Model structure of the nine different lake carbon models used in this study. Models either estimated two (total DOC [DOC]
and CO2) or four state variables (slow decomposing DOC [DOCs], fast decomposing DOC [DOCf], total DOC [DOC], and CO2) while esti-
mating either the turnover rate of DOC (d20), fraction of loaded C into the epilimnion (fracEpi), and inflation coefficient (σ) or the parti-
tioning of loaded DOC into fast and slow decomposing pools (fracFast), fracEpi, and σ, respectively. We compared eight different model
structures when we assimilated synthetic observations, where Model 9 was the true process which was used to generate the true states.
Model estimates of d20 and the fixed parameters dslow and dfast were modeled with or without temperature dependence (Eq. 4) and with
or without Michaelis–Menten kinetics (Eq. 21).

Model State variables
Parameters
estimated Data

Temperature
dependence

Michaelis–Menten
kinetics

1 CO2, DOC, DOC
l, DOCr fracLabile, fracEpi, σ Real True False

2 CO2, DOC d20, fracEpi, σ Synthetic False False

3 CO2, DOC d20, fracEpi, σ Synthetic True False

4 CO2, DOC d20, fracEpi, σ Synthetic False True

5 CO2, DOC d20, fracEpi, σ Synthetic True True

6 CO2, DOC, DOC
l, DOCr fracLabile, fracEpi, σ Synthetic False False

7 CO2, DOC, DOC
l, DOCr fracLabile, fracEpi, σ Synthetic True False

8 CO2, DOC, DOC
l, DOCr fracLabile, fracEpi, σ Synthetic False True

9 CO2, DOC, DOC
l, DOCr fracLabile, fracEpi, σ Synthetic True True
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distribution, such that the reactivity of the DOC amalgam-
ation within the lake will be similar to its inflowing water
source, whereas the reactivity of DOC in a long HRT lake will
be much lower than its inflowing water source. Indeed, recent

research points to control of hydrology on the emergent prop-
erty of the turnover rate of DOC. For example, Vachon
et al. (2016) have developed an explicit formulation describing
the effect of HRT on the apparent decay rate of DOC as a
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function of the initial reactivity of the DOC inputs. Similarly,
the turnover rate of DOC has been shown to be negatively
related to HRT in a broad cross section of systems (Catalán
et al. 2016; Evans et al. 2017). Finally, the turnover rate of
DOC was enhanced during periods of short HRT following
extreme precipitation events (Zwart et al. 2017).

The uncertainty in our estimated C pools generally
decreased as more observations were assimilated, while
observed uncertainty in C pools remained roughly the same
throughout the study period (Fig. 2F). Reducing uncertainty in
lake C pools and flux estimates helps researchers better under-
stand how lakes fit into regional C budgets and interpret lake
C responses to interannual and intra-annual variations in driv-
ing variables (e.g., weather). Repeated observations of ecosys-
tems increase our confidence in the measured states and our
understanding of ecosystem processes. However, monetary
and time constraints can limit the number of observations of
the ecosystem across a sampling time period and/or during a
sampling event. Data assimilation makes the best use of lim-
ited observations by reducing our uncertainty in estimated
states and parameters by combining information from the col-
lected data and models. Additionally, power analyses may be
performed to determine how many and what types of observa-
tions are needed to reduce forecast uncertainty below a desired
threshold (Dietze 2017). Mathematically, combining two
pieces of information with Gaussian error distributions such
as in the EnKF leads to a combined error that is less than or
equal to the minimum error of the two pieces of information
(Lahoz et al. 2010). We were confident that the reduced uncer-
tainty in estimated C pools was meaningful and informative
since there was no relationship between time and the RMSE of
modeled DOC or CO2 for our model runs (p > 0.5; linear
regression), indicating that there was not a systematic diver-
gence of models and observed data (filter divergence; Dietze
2017). Furthermore, our estimated covariance inflation factor
was near one and varied little throughout the study period
(mean = 0.97; CV = 0.01).

In addition to reducing the uncertainty in estimates of C
pool sizes, the data assimilation analysis provides informed
estimates, with quantified uncertainty, of C pool sizes at time
points when observations were not made. Without a process
model to perform this gap filling, we would often resort to lin-
ear interpolation to estimate C pool sizes a time points when

observations were not available; however, alternative options
to linear interpolation are available for gap filling such as
using generalized additive models. If observation frequency is
low and/or C pools are variable through time, then linearly
interpolated C pools will likely be dissimilar to the more accu-
rate process model-estimated C pools. For example, even with
weekly sampling rate, linearly interpolated CO2 pool could
deviate by as much as 51% from the model estimated CO2,
whereas linearly interpolated DOC pool had a maximum dif-
ference of 15% from the model estimated DOC pool. This can
have important implications for estimating how much CO2 is
emitted to the atmosphere from a lake at a seasonal time scale,
especially if lakes are not sampled during times of dramatic
increases or decreases in CO2 such as following extreme pre-
cipitation events (Ojala et al. 2011; Vachon and del Giorgio
2014), shortly after ice-off in temperate and boreal lakes
(Striegl et al. 2001; Baehr and DeGrandpre 2004; Vachon and
del Giorgio 2014), or during phytoplankton blooms in eutro-
phic lakes (Balmer and Downing 2011).

Synthetic observation assimilation
For an example of synthetic observations assimilated into a

simplified process model and compared to the true state of the
ecosystem, see Fig. 3. In this example, a simplified process
model informed with synthetic observations produced lake C
pool estimates that were closer to the true state than the syn-
thetic observations themselves were (Fig. 3A,B). The simplified
process model compared to synthetic observations had an
RMSE of 0.71 g C m−3 for DOC and 0.030 g C m−3 for CO2.
This was similar to the RMSE calculated between our model
estimated states and observations when assimilating real
observations (RMSE DOC: 0.65 g C m−3; RMSE CO2: 0.074 g
C m−3). Furthermore, the uncertainty in the C pools was
reduced after assimilating synthetic observations, while syn-
thetic observations remained fairly uncertain throughout the
time period (Fig. 3D).

Across all simplified model structures and sampling proto-
cols of the true states, the data assimilation estimates of DOC
were closer to the true state than the synthetic observations
(Fig. 4A,C,E). This was not the case for data assimilation esti-
mates of CO2, as only 49% of the data assimilation runs were
closer to the true CO2 states than the synthetic observations
were to the true ecosystem state (Fig. 4B,D,F). However, the

Fig. 2. Data-assimilation–estimated and observed states of (A) DOC and (B) CO2 for the two DOC pool process model (Model 1; Table 1). Filled in
black circles are the assimilated observations and the open circles are the withheld observations used for evaluating model performance. Black error bars
(panels A and B) for the observed states of DOC and CO2 are 1 standard deviation. The temperature corrected turnover rate of DOC (C) and the turn-
over rate of DOC standardized to 20�C (D) varied throughout the time period and responded to loaded DOC, indicated by the black dashed line in panel
D. The EnKF estimates the partitioning of loaded DOC into the labile and recalcitrant DOC pools, where 0.3 represents that 30% of the loaded DOC is
fast decomposing (E). The gray lines (panels A–E) represent data-assimilation–estimated states or parameters for each ensemble (n = 100), and the dark
gray line represents the mean of all ensemble estimates. At each time point, we calculated the CV of the observed states, as well as the CV of the data-
assimilation–estimated states across ensemble model runs as an indication of the uncertainty in our C pool size estimates. The uncertainty in data assimila-
tion estimates of DOC and CO2 pools decreased as more data are assimilated (DA DOC CV and DA CO2 CV in panel F), while the uncertainty in observed
C pools remained fairly constant throughout the time period (Obs DOC CV and Obs CO2 CV in panel F). Note that the CV in panel F includes uncertainty
in epilimnetic volume as well as C concentration.
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synthetic observations of CO2 were closer to the true state
only when more than one sample replicate was taken, mean-
ing that data assimilation was most valuable when few repli-
cate samples were collected, even if the process model used for
data assimilation was a simplified version of the true process.
As multiple inaccurate model structures resulted in con-
strained predictions and acceptable results, it raises the ques-
tion as to how we can use data assimilation to gain knowledge
of processes governing the system? Indeed, sometimes it is dif-
ficult to distinguish which processes are important for accu-
rately predicting system dynamics due to equifinality in
estimated parameters or insensitive model structures. For
example, Hararuk et al. (2018) found it difficult to distinguish
between biodegradation and photodegradation rates as these
rates were additive and drivers for each process were positively
correlated. In such cases, assimilating additional sources of
information to constrain processes or structure can help; for
example, in situ incubation experiments could be conducted
to help constrain rates of photodegradation and
biodegradation.

Model structure had a significant effect on data assimilation
performance compared to synthetic observation performance
for both DOC and CO2 (p < 0.001; analysis of variance). Also,
sample replicates and sampling interval both had significant,
negative effects on the difference between synthetic observa-
tion RMSE and data assimilation RMSE (p < 0.001 for both;
linear regression; Fig. 4). The slight bimodal shape in some of
the violin plots in Fig. 4 represents an observation perfor-
mance gain where the observations were getting closer to the
true C state by averaging over more replicate samples. The
largest performance gain was observed when transitioning
from one to two replicate samples (Fig. 4C,D). This indicates
that data assimilation was most valuable when sampling inter-
val was short and sample replicates were low. This has implica-
tions for how we best use high-frequency sampling
(e.g., automated sensors), which typically includes just one
sample replicate since automated sensors are usually expen-
sive. By assimilating synthetic observations, we demonstrate
that unless there are multiple sample replicates, high-
frequency sampling will be further from the true states than

Fig. 3. Data assimilation example of a simplified process model (Model 2; Table 1) run with synthetic observations that were sampled every 7 d with
two replicates at each sampling time point. In this example, the data-assimilation–estimated DOC and CO2 states were closer to the true DOC and CO2

states than the synthetic observations themselves (DA RMSE for DOC: 0.15 mg L−1; Obs RMSE for DOC: 0.80 mg L−1; DA RMSE for CO2: 0.029 mg L−1;
Obs RMSE for CO2: 0.035 mg L−1). The data-assimilation–estimated turnover rate of DOC (d20, dark gray line, panel C) varied throughout the model run
ranging from 0.0067 to 0.0072 d−1. The true d20 (dashed black line, panel C) responded to hydrologic loads of DOC (not shown) and varied throughout
the time period. At each time point, we calculated the CV of the synthetic observation states, as well as the CV of the data-assimilation–estimated states
across ensemble model runs as an indication of the uncertainty in C pool size estimates. The uncertainty of the estimated states was reduced through
time via data assimilation, while the uncertainty of the observed states remained roughly constant (panel D).
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Fig. 4. The difference between RMSE for synthetic observations compared to true states (Obs RMSE) and RMSE for data-assimilation–estimated states com-
pared to true states (DA RMSE). The horizontal dashed line indicates when there was no difference between data-assimilation–estimated states and observed
states in terms of accurately capturing the true states, and positive values indicate that data-assimilation–estimated states were more accurate while negative
values indicate that observed states were more accurate. Violin plots show the distribution of each model’s performance across all sampling protocols for both
DOC (A) and CO2 (B), with models ordered in increasing complexity ending with Model 9 as the true process. Data assimilation was most valuable with
fewer replicate samples as more replicates decreased the models’ performance over observations for both DOC (C) and CO2 (D) across all model structures.
Shorter sampling intervals also increased the models’ performance over observations for both DOC (E) and CO2 (F) across all model structures.
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the data-informed model estimates. Therefore, although auto-
mated sensors are valuable tools for lake scientists, assimilat-
ing the data they collect into a process model increases their
utility as the information from these sensors coupled with
knowledge of ecological and biogeochemical interactions cap-
tured by a process model provides estimates closer to the true
state compared to observation-derived estimates. Additionally,
autocorrelation in high-frequency observations such as those
from automated sensors reduces the effective sample size of
assimilated observations as these observations are not
independent.

We show that by combining information from both the
synthetic observations and process model through data
assimilation, we can often estimate the true state of the sys-
tem more accurately than our observations of the true state,
even if our representation of the true process is simplified.
However, the accuracy of the data assimilation estimates
depends on the states that are estimated. In our case, it was
much easier to estimate the true DOC state than the true
CO2 state; in fact, the data-assimilation–estimated DOC
states were always closer to the true DOC states than the
observations themselves were, regardless of sampling fre-
quency or replication. This may be because the size of the C
flux (DOC decay into CO2) was much larger relative to the
CO2 pool than to the DOC pool, and any inaccuracies in esti-
mated parameters of C flux affect the CO2 pool much more
than the DOC pool. Accurate ecological forecasts are needed
to guide our decision making on important economic, socie-
tal, and environmental issues (Clark et al. 2001; Dietze
et al. 2018). However, there is often debate on how much
detail to include in ecological models (e.g., Grimm and Rails-
back 2005; Vallino 2010; Travis et al. 2014) and even
whether ecological forecasting using process models is a use-
ful endeavor (Schindler and Hilborn 2015). We show that
these synthetic data assimilation experiments can help iden-
tify which modeled ecosystem states are most sensitive to
variations in model structure, and help guide which type of
data to collect, at what frequency, and how many replicates
in order to accurately predict lake C states.

Comments and recommendations
Although we include many essential processes for describing

lake C dynamics when assimilating real observations, we did
not explicitly test different model structures (other than includ-
ing carbonate equilibria dynamics, see Supporting Information),
which is another utility of data assimilation. For an example of
a robust model structure comparison (102 different models)
using data assimilation with the same lake dataset used in this
analysis, see Hararuk et al. (2018). While our model structure
performed well when assimilating real observations from East
Long Lake, it is unclear if the same model structures used here
and in Hararuk et al. (2018) will perform equally well across dif-
ferent lakes. For example, including carbonate equilibria

processes did not affect our estimates of the DOC and CO2

pools (Supporting Information); however, applying a model
without explicit consideration of carbonate equilibria processes
to hardwater lakes and lakes with different pH dynamics than
East Long Lake could be quite problematic. Identifying essential
processes to include in lake C models across a diverse set of
lakes is an important next step for advancing broad-scale
modeling of lake C cycling. Likewise, forecasting lake C states
and fluxes and confronting these forecasts with new observa-
tions through data assimilation can accelerate lake C research
by identifying processes we do and do not know well, and what
data we need to collect to help us learn more about these
important ecosystems (Dietze et al. 2018).

Given the important and changing role of lakes in the
global C cycle, it is imperative that we understand the pro-
cesses that regulate lake C pools and fluxes, estimate those
pools and fluxes as accurately as possible, and quantify the
uncertainty in those estimates. The last decade has seen dra-
matic increases in networked lake science (Hanson
et al. 2016), high-frequency sensor data availability (Porter
et al. 2012), continental-scale lake sampling efforts (USEPA
2009), and harmonized water quality databases (Soranno
et al. 2015; Read et al. 2017) to help understand lake responses
to environmental change. However, lake biogeochemists have
yet to embrace data assimilation techniques when using these
data, which presents a missed opportunity to combine infor-
mation from data and models to help distinguish between
competing model structures, reduce uncertainty in model esti-
mates and forecasts, and identify sampling efforts needed. By
assimilating data into simple lake C process models, we dem-
onstrate that we can reduce uncertainty in our estimates of
lake C pools and fluxes and more accurately estimate the true
C states compared to observations, even with simplified repre-
sentations of the true process. We echo the call from Hipsey
et al. (2015) to utilize data assimilation techniques within lake
biogeochemistry to more accurately forecast ecosystem states
and processes, learn about ecosystem dynamics, and maximize
use of scientific knowledge and observations of these impor-
tant ecosystems. In order to reduce analytical barriers to using
such tools, we provide open-source R code of the model and
EnKF we used in this analysis in v1.0 (http://doi.org/10.5281/
zenodo.1322130) of our GitHub repository (https://github.
com/jzwart/lake_C_EnKF).

Data availability statement
All information on GitHub are available at https://github.

com/jzwart/lake_C_EnKF
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