
Ecology, 96(8), 2015, pp. 2257–2264
� 2015 by the Ecological Society of America

Phytoplankton traits predict ecosystem function
in a global set of lakes

JACOB A. ZWART,1,3 CHRISTOPHER T. SOLOMON,2 AND STUART E. JONES
1

1Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA
2Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec H9X3V9 Canada

Abstract. Predicting ecosystem function from environmental conditions is a central goal
of ecosystem ecology. However, many traditional ecosystem models are tailored for specific
regions or ecosystem types, requiring several regional models to predict the same function.
Alternatively, trait-based approaches have been effectively used to predict community
structure in both terrestrial and aquatic environments and ecosystem function in a limited
number of terrestrial examples. Here, we test the efficacy of a trait-based model in predicting
gross primary production (GPP) in lake ecosystems. We incorporated data from .1000
United States lakes along with laboratory-generated phytoplankton trait data to build a trait-
based model of GPP and then validated the model with GPP observations from a separate set
of globally distributed lakes. The trait-based model performed as well as or outperformed two
ecosystem models both spatially and temporally, demonstrating the efficacy of trait-based
models for predicting ecosystem function over a range of environmental conditions.

Key words: ecosystem function; GLEON; gross primary productivity; lake primary production;
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INTRODUCTION

The ecosystem concept has enabled tremendous gains

in understanding of biogeochemical fluxes at local,

regional, and even global scales. However, this concept

is often applied in a static manner, relying on empirical,

correlative relationships that fail to consider the

ecological interactions that underpin ecosystem process-

es (Suding et al. 2008, Loreau 2010). Unfortunately, the

inflexibility of traditional ecosystem approaches limits

their utility when attempting to predict ecosystem

function for systems outside of their training data set,

such as in dissimilar regions or under environmental

change scenarios. The resurgence in trait-based ecology

has provided a useful alternative for predicting emergent

ecosystem processes across a wide range of ecosystems

and under future climate and land-use scenarios by

considering additional ecological detail within ecosys-

tems (Dı́az et al. 2007, Suding et al. 2008).

Trait-based approaches are now frequently applied to

predict species or trait composition of communities

(McGill et al. 2006) and species’ spatiotemporal

distribution through mechanistic niche modeling (Kear-

ney and Porter 2009). These studies exploit knowledge

of response traits (traits that predict species’ fitness as a

function of environmental conditions) to explain species’

niches and consequently, community assembly dynam-

ics. For example, habitat filtering mediated by response

traits explained divergent strategies of tree species in an

Amazonian forest (Kraft et al. 2008). In aquatic

environments, Edwards et al. (2013a) used phytoplank-

ton response traits, quantified in laboratory cultures, to

predict the abundance of resource utilization traits in

response to a fluctuating oceanic environment in the

English Channel, as well as predicting freshwater

phytoplankton abundances across a gradient of light

and phosphorus availability in United States lakes

(Edwards et al. 2013b).

In addition to response traits, effect traits (those that

govern species’ contributions to ecosystem function) can

be used to scale from environmental variables to

community dynamics and ecosystem processes within a

single trait-based framework (Suding et al. 2008).

Therefore, trait-based approaches provide ecosystem

scientists with a tool to incorporate additional ecological

knowledge (species’ traits) when attempting to predict

changes in ecosystem function. A handful of terrestrial

studies have led the way in the use of traits to predict

ecosystem function (e.g., Lavorel and Garnier 2002,

Dı́az et al. 2007, de Bello et al. 2010), but we are

unaware of any aquatic studies that have achieved this

goal.

Here, we use models of freshwater phytoplankton

response and effect traits to predict aquatic ecosystem

primary productivity for a set of globally distributed

lakes. We leverage division-specific phytoplankton

biovolume data from .1000 United States lakes to

generate niche models, and combine these models with

literature-derived estimates of division-specific light use

efficiency to generate lake-specific estimates of gross
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primary production (GPP). We evaluate the perfor-

mance of our trait-based model of GPP relative to two
ecosystem models of GPP using a set of globally

distributed lakes for which GPP observations are
available. Additionally, we examine the temporal

performance of both the trait-based and ecosystem
models using one lake for which temporally resolved
nutrient data were available. We hypothesize that our

trait-based model, by capturing key ecological mecha-
nisms, will provide accurate estimates of lake GPP and

will outperform widely used traditional ecosystem
models.

METHODS

Trait-based model of lake GPP

To calibrate our trait-based model of GPP, we used
the 2007 U.S. Environmental Protection Agency Na-

tional Lake Assessment data set (NLA), a spatially
robust sampling effort designed to provide an estimate
of the condition of lakes in the contiguous United States

(USEPA 2009). We created niche models for seven
phytoplankton divisions (cyanobacteria, diatoms, cryp-

tomonads, chlorophyta, euglenoids, chrysophyta, and
dinoflagellates) using lake physiochemical and phyto-

plankton data gathered from the NLA data set. The
coefficients of the lake physiochemical parameters in the

niche models represent the response traits of each
phytoplankton division. Because our ultimate goal was

to evaluate the performance of a trait-based model of
GPP against sensor-network-derived observations from

the validation data set, we selected only lake physio-
chemical parameters from the NLA data set that were

also readily available in the validation data set. These
included total phosphorus (TP), total nitrogen (TN),

dissolved organic carbon (DOC), surface temperature,
and average light climate experienced by phytoplankton
in the upper mixed lake layer.

Biovolume data was not available for every phyto-

plankton observation within the NLA data set, thus, we
supplemented missing biovolume data where possible by
multiplying observed phytoplankton abundance by

mean genera cell size from Kremer et al. (2014). Mean
genera cell size data that were available for both the

NLA data set and Kremer et al. (2014) corresponded
well (R2 ¼ 0.51, linear regression P , 0.001, n ¼ 108).

After supplementing with cell size data from Kremer et
al. (2014), biovolume attributed to our seven divisions

accounted for on average 92% of the phytoplankton
observed across all NLA lakes.

The absence of phytoplankton divisions from several
NLA lakes created biovolume data containing many

zeros. As a result, we modeled phytoplankton biovol-
ume conditional on presence, as previously done with

similar phytoplankton biovolume data sets (two-stage
conditional approach; Cunningham and Lindenmayer

2005, Edwards et al. 2013a, b). Phytoplankton presence/
absence was modeled as a binary response to our

selected physiochemical parameters and log phyto-

plankton biovolume of the nonzero biovolumes was

modeled using the same candidate physiochemical

parameters. The binary presence/absence model was

implemented using logistic regression (binomial error

distribution with a logit link function), and linear

models with normally distributed errors were used for

response trait models with log-transformed biovolume

of each phytoplankton division as the dependent

variable. Akaike’s information criterion (AIC) was used

to identify the top model for each phytoplankton

division’s presence/absence and biovolume. In a number

of cases, multiple models were within two DAIC units of

the best model, but we chose to use only the model with

the lowest AIC. Total N, TP, and DOC were

transformed using natural log, and light climate was

transformed using log10, while water temperature was

not transformed. We used these niche models and

seasonal averages of observed physicochemical charac-

teristics to estimate phytoplankton community compo-

sition in the validation lakes. More information on the

data sets and trait-based model can be found in the

Appendix.

We linked phytoplankton community composition to

GPP via the phytoplankton trait of light use efficiency

(a, GPP per unit incident light). We assume a can be

expressed as a community-aggregated trait, meaning

that the community trait is equal to the summation of

each individual division’s trait weighted by its contribu-

tion to community biomass, or in our case biovolume

(biomass ratio hypothesis; Violle et al. 2007). Labora-

tory-measured a’s, estimated from growth–irradiance

curves, were obtained for 67 phytoplankton species

representing the seven phytoplankton divisions de-

scribed by our niche models (Schwaderer et al. 2011,

Edwards et al. 2013b). When more than one estimate of

a was available, a mean a was calculated from the shape

parameters of a gamma distribution fit to all available a
for that division (Appendix: Table A4 and Fig. A2). To

convert laboratory-measured a’s to comparable units

used in the validation data set, we combined division-

specific phytoplankton biovolume-to-carbon conver-

sions, division-specific laboratory-derived a’s, and a

respiratory quotient of one to generate a division-

specific effect trait a (with units of mg O2�(L lake wa-

ter)�1�d�1�(lm phytoplankton)�3�(mmol photosyntheti-

cally active radiation [PAR])�1�m�2�s�1).
We generate division-specific estimates of GPP for

each validation lake by multiplying niche model

predictions of biovolumes for each division, division-

specific effect trait a, and each validation lake’s mean

daily incident PAR; assuming the biomass ratio

hypothesis (Violle et al. 2007), we summed all divi-

sion-specific GPPs to produce an average daily estimate

of ecosystem GPP.

Ecosystem models of lake GPP

We compare our trait-based model to a traditional

ecosystem model of lake GPP that uses TP as the sole
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predictor variable (Hanson et al. 2003, 2004). This

model was calibrated using summertime TP and GPP

data collected from 25 lakes located in the Northern

Highlands Lake District of Wisconsin, USA and the

Upper Peninsula of Michigan, USA. It focuses on a

phenomenological description of the relationship be-

tween nutrient concentration and primary production,

rather than a mechanistic description of response and

effect traits. Total phosphorus is often used to predict

lake primary production because it represents a rela-

tively conservative indicator of the availability of the

often limiting nutrient for phytoplankton productivity

(Schindler 1977), and it builds upon the relationship

between TP and chlorophyll a (Dillon and Rigler 1974),

an indicator of both phytoplankton biomass (Vörös and

Padisák 1991) and primary productivity (Cole et al.

2000). Furthermore, the GPP–TP relationship may be

stronger than the GPP–chlorophyll a relationship due to

differences in phytoplankton community composition or

strong zooplankton grazing on phytoplankton (Smith

1979).

As the calibration data set for the Hanson et al.

(2004) ecosystem model is geographically constrained,

we also compare our trait-based model to an ecosystem

model of GPP produced using the NLA data set. Our

ecosystem model structure is similar to our trait model;

however, we do not distinguish between phytoplankton

divisions for both the response and effect traits. As

such, we model total phytoplankton biovolume using

the same physiochemical parameters in the division-

specific niche models (for coefficients of parameters, see

Appendix: Table A3), and use these response coeffi-

cients along with average observed physiochemical

parameters to estimate total phytoplankton biovolume

for the validation lakes. We generate a division-

ambiguous phytoplankton effect trait a by combining

the mean laboratory-measured a for all divisions

(Schwaderer et al. 2011, Edwards et al. 2013b), a single

phytoplankton biovolume-to-carbon conversion for

protist plankton (Menden-Deuer and Lessard 2000),

and a respiratory quotient of one (with units of mg

O2�(L lake water)�1�d�1�(lm phytoplankton)�3�(mmol

PAR)�1�m�2�s�1). We generate mean daily estimates of

ecosystem GPP for each validation lake by multiplying

predicted total phytoplankton biovolume, the division-

ambiguous phytoplankton effect trait a, and each

validation lake’s mean daily incident PAR.

We use the TP ecosystem model described in Hanson

et al. (2004; referred to as the Hanson-ecosystem model)

and our own ecosystem model (referred to as the NLA-

ecosystem model) as benchmarks to evaluate the

performance gain afforded by a more ecologically

detailed trait-based model when predicting ecosystem

function.

Model validation

We utilized a set of 20 lakes from the Global Lake

Ecological Observatory Network (GLEON), a grass-

roots organization of researchers and autonomous

sensor platforms designed to provide high-resolution

sensor data for a global set of lakes. For each of the

validation lakes, low-frequency lake parameters (e.g.,

TP, TN, DOC) were sampled at the same location as the

high-frequency measurements. Sampling date ranges

were from 1 June to 31 August for lakes in the northern

hemisphere and from 1 December to 2 March for lakes

in the southern hemisphere, and we averaged all

sampling time points of the low-frequency lake param-

eters to generate seasonal means for use in the trait-

based and ecosystem models. Additionally, observed

phytoplankton biovolume was available for one lake in

our data set (Mendota, Wisconsin, USA; North

Temperate Lakes LTER 2011), and we use this data to

evaluate the performance of our niche models. A

summary of the validation lakes’ environmental param-

eters is in Appendix: Table A1.

Observed rates of GPP for the validation lakes were

calculated using a free-water metabolism model of

dissolved oxygen (DO) measurements in the deepest

part of the lakes to capture the pelagic primary

production signal, or phytoplankton contribution to

whole-lake primary productivity (Van de Bogert et al.

2007). Diel DO cycles were inverse modeled by

Solomon et al. (2013) to estimate daily rates of GPP

for each of the validation lakes and these rates were

used in our analysis. Only summertime metabolism data

were used, as the niche models were generated using

summertime sampling in the NLA data set and

environmental data from the validation data set was

collected over this same time span. Days for which

metabolism fits had a coefficient of variation, based

upon bootstrapped model fits, of greater than 50% were

not used, as the model for the free-water method can

sometimes produce low signal to noise ratios to which a

simple metabolism model fit performs poorly (Solomon

et al. 2013, Rose et al. 2014). This occurred in only 18%

of the metabolism days. The mean of daily GPP

observations represents each lake’s seasonal GPP

observation, and these means are compared to output

from the trait-based and ecosystem models to evaluate

model performance.

Daily metabolism estimates provided by the autono-

mous sensor technology allow for evaluation of tempo-

ral model performance in addition to spatial

performance. Using a single lake, St. Gribsø, Denmark,

which had temporally resolved nutrient data available,

we also examined the temporal performance of both the

trait-based and ecosystem models when predicting daily

GPP. This lake had at least weekly measurements of all

physiochemical parameters and we linearly interpolated

between sampling time points to generate daily estimates

of physiochemical parameters. Both the trait-based and

ecosystem models were simulated with the daily

physiochemical parameters to generate daily estimates

of GPP.
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Model performance

We evaluate the performance of the trait-based and

ecosystem models by comparing their predicted GPP

values to observed GPP using several summary statis-

tics. As an indicator of overall model predictive power

we use root mean square error (RMSE). RMSE can be

broken down into two components, bias and variance.

We use mean error squared (MES) to describe model

prediction bias, either systematically over- or underes-

timating observations, and we use R2 to describe model

prediction variance. As applied here, R2 does not

represent the variance in observations explained by our

models. Rather, we use one minus the R2 of model

predictions regressed on observations, reflecting vari-

ance in model prediction after removing any effect of

model bias. When reporting these statistics, we refer to

one minus R2 as model variance to avoid confusion with

the traditional interpretation of R2, and we refer to MES

as model bias. Model predictions with high bias have a

high MES and model predictions with high variance

have a high one minus R2. We used the R statistical

program for all model fitting and subsequent analyses

(R Development Core Team 2013).

RESULTS

Despite the coarse taxonomic resolution, our niche

models explained a modest but significant (P , 0.05)

amount of variation in division-specific phytoplankton

biovolume across the NLA lakes (R2 ¼ 0.07–0.30; all

likelihood-ratio tests P , 0.001). Our niche model

parameters, representative of response traits, were

consistent with previous observations of phytoplankton

traits and community dynamics. All coefficients describ-

ing response to nutrients were positive, but this was not

the case for temperature. Diatoms and cryptomonads

had negative responses to water temperature, while the

rest of the divisions responded positively (Appendix:

Table A3).

Although phytoplankton community data were only

available for one validation lake (Mendota), our niche

models predicted phytoplankton biovolumes fairly well

in this lake. Modeled and observed mean summer total

phytoplankton biovolume were within an order of

magnitude (off by a factor of 7.5), whereas observed

total phytoplankton biovolume varied by well over two

orders of magnitude across the sampling time points.

Additionally, rank order of mean summer phytoplank-

ton division abundance is consistent between our

modeled and observed data for Mendota.

The trait-based model, which combined niche models

with division-specific light use efficiency, made reason-

ably accurate predictions of mean summer GPP in the

validation lakes (Fig. 1A). Bias in model output was

low, although the trait-based model tended to overesti-

mate observed rates of GPP. Both the trait-based model

and Hanson-ecosystem model (Fig. 1B) performed

much better than the NLA-ecosystem model (Fig. 1C),

as the NLA-ecosystem model had poor predictive power

and very high bias (Table 1). The Hanson-ecosystem

model had better overall predictive power than our trait-

based model, but higher bias. Despite higher bias, the

Hanson-ecosystem model had the lowest variance in

model output, highlighting a trade-off between bias and

variance for the trait-based and Hanson-ecosystem

models.

There was one highly influential, overestimated data

point (Acton Lake, Ohio, USA) in the validation lakes

for both the trait-based and NLA-ecosystem models.

Removing this lake from the spatial analysis significant-

ly improved model performance metrics for both the

trait-based (RMSE¼ 2.47, bias¼ 0.88, variance¼ 0.59)

and NLA-ecosystem model (RMSE ¼ 10.92, bias ¼
74.00, variance ¼ 0.63), while minimally effecting the

Hanson-ecosystem model performance (RMSE ¼ 2.42,

bias¼ 2.53, variance¼ 0.39). This lake’s physiochemical

parameters were very high for a number of environ-

mental variables in the NLA data set, including water

FIG. 1. Observed mean summer gross primary production (GPP) plotted against estimates from (A) the trait-based, (B)
Hanson-ecosystem, and (C) NLA-ecosystem models. Each point represents a single lake (n¼20), and the dashed line represents the
1:1 line. All GPP observations and estimates were measured in mg O2�L�1�d�1. Note that values are plotted on a log scale.
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temperature, TP, and TN (76th, 80th, and 97th

percentile in the NLA data set respectively). Based on

z-scored predictor variables, TN had the largest effect

size (up to nine times the next most influential predictor)

for phytoplankton biovolume in five of the seven

division-specific niche models and the total biovolume

niche model, while it had the second-strongest effect size

for the two remaining division-specific niche models.

Despite being trained on spatial data, the trait-based

model also performed well in predicting daily fluctua-

tions in GPP within a single lake through time, and

performed much better than both ecosystem models in

this context (Fig. 2). The trait-based model had

reasonable predictive power with relatively low bias

and variance (Fig. 2A), whereas the Hanson-ecosystem

model had a negative correlation with observed GPP

(Pearson’s r ¼ �0.07) and both ecosystem models

produced higher bias and variance and worse predictive

power (Fig. 2B, C, Table 1).

DISCUSSION

The renewed interest in trait-based ecology to model

both species distributions and ecosystem function is

timely, given the pressing issues of global climate and

land use change (McGill et al. 2006, Litchman and

Klausmeier 2008, Suding et al. 2008). The promise of

this approach is that it can explain the organization of

ecological communities, and consequently ecosystem

function. Our results provide compelling evidence for

this trait linkage from environmental conditions to

ecosystem function for aquatic systems, following

previous work in terrestrial systems (Lavorel and

Garnier 2002, Dı́az et al. 2007, Violle et al. 2007). By

integrating autonomous sensor-based estimates of eco-

system function and trait-based models, we have

improved our ability to predict how environmental

conditions dictate aquatic primary productivity via

phytoplankton sorting.

Trait-based vs. ecosystem models

Without being calibrated by any ecosystem-scale

measurements of GPP, our trait-based model predicted

ecosystem GPP remarkably well in a global set of lakes,

and displayed little bias. This emphasizes the portability

afforded by consideration of traits and the efficacy of

models incorporating some level of ecological detail to

predict ecosystem function. Because traditional ecosys-

tem models often use only a single predictor variable

(TP in the case of the Hanson-ecosystem model), their

output can be highly biased depending on the level of

stationarity between environmental predictors in the

training and prediction data sets. When applying the

Hanson-ecosystem model to the validation lakes, we

observed significant bias in our predictions. This likely

reflects the geographically constrained nature of the

training data set relative to the diversity of the global set

of lakes used for validation.

The NLA-ecosystem model, although much less

geographically constrained, also produced significant

bias and poor model performance, highlighting the

importance of including at least some taxonomic

resolution when using response and/or effect traits to

predict ecosystem function. Our trait-based model was

constrained to the taxonomic resolution of phytoplank-

ton divisions due to the limited availability of effect trait

data. We think including more taxonomic resolution

would improve our trait-based estimates of ecosystem

function, echoing the need for a global database of

phytoplankton traits (Litchman and Klausmeier 2008).

Although the trait-based model had lower bias than

the Hanson-ecosystem model, the model complexity

may promote variation in the model output, resulting in

higher model variance. Mathematically, there is a trade-

off in variance and bias for a given model, and it is often

difficult to reduce both simultaneously (Hastie et al.

2009). More complex models tend to have higher

variance in model output as they are typically more

sensitive to small changes in driver data. Conversely,

TABLE 1. Spatial and temporal model performance metrics for the trait-based and ecosystem
models.

Model and metric Trait-based Hanson-ecosystem NLA-ecosystem

Spatial

RMSE 4.26 2.73 20.73
Bias 2.81 3.30 147.56
Variance 0.51 0.36 0.57

Temporal

RMSE 1.37 1.58 5.76
Bias 0.31 1.66 22.35
Variance 0.72 0.995 0.87

Notes: Spatial model performance summarizes predicted gross primary production (GPP) values
compared to observed GPP for the validation lakes (n ¼ 20) and temporal model performance
summarizes daily predicted GPP values compared to daily observed GPP for St. Gribsø, Denmark,
the lake at which the nutrient data required for the trait-based and ecosystem models were available
at high temporal frequency (n ¼ 90). Performance metrics are root mean square error (RMSE),
mean error square (bias), and one minus the R2 of observations regressed on model predictions
(variance). The best-performing model for each metric is shown in boldface type.
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simple models often have higher bias in model output, as

their simplicity may not capture important additional

drivers that vary across systems and regions (e.g., light,

in addition to TP, regulating phytoplankton productiv-

ity; Karlsson et al. 2009). Our comparison of trait-based

and Hanson-ecosystem GPP models provides further

support for the trade-off between model bias and

variance along a gradient of model complexity.

Predicting ecosystem function through time in a single

location with models that are trained using spatial data

may fail to accurately capture more subtle temporal

changes in environmental drivers. All models used in our

analysis were trained using only spatial data, however,

the trait-based model outperformed both ecosystem

models when applied temporally (Fig. 2, Table 1).

Previous efforts to substitute space for time in an

attempt to predict ecological processes under changing

environmental conditions have produced mixed results

(Pickett 1989, Johnson and Miyanishi 2008, Blois et al.

2013), and can perform poorly when spatial variation in

driver data is much larger than temporal variation

(Alder and Levine 2007, Blois et al. 2013). Even though

every physiochemical driver used in the trait-based

model had more spatial variation than temporal

variation (indicated by a higher coefficient of variation),

the temporal performance is still strong, underlining the

flexibility of trait-based approaches to predict ecosystem

function both spatially and temporally.

FIG. 2. Daily observations of GPP (n ¼ 90) from a single lake compared with daily predictions from (A) the trait-based, (B)
Hanson-ecosystem, and (C) NLA-ecosystem models. Each panel includes time series of the daily observations and model
predictions and smaller scatter plots (right) of daily observations and predictions where each point is a day and the dashed line is
the 1:1 line. Data are from St. Gribsø, Denmark, the lake at which the nutrient data required for the trait-based and ecosystem
models were available at high temporal frequency.
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We show that laboratory-measured phytoplankton

effect traits can be used to predict ecosystem function

across both space and time. Although our trait-based

predictions were accurate, we did observe a tendency for

our trait-based model to overestimate GPP. One

explanation for this overestimation is that a is, on

average, reduced in the natural environment relative to

optimal conditions provided in a laboratory setting. For

instance, photosynthetic rates for three species of

phytoplankton were reduced under phosphorus limita-

tion (Litchman et al. 2003), and temperature changes

can effect growth rate more than fourfold in some

species of phytoplankton (Maddux and Jones 1964).

Additionally, light saturation has been shown to reduce

photosynthetic efficiency in some natural environments,

and might explain some of the observed overestimation

(Platt and Jassby 1976). Assuming that phytoplankton

performance is reduced in the suboptimal natural

environmental, we can ask by how much we would

have to discount lab-derived a estimates to most

accurately predict the observed GPP. Discounting all

division-specific a values by 54% provided the best

correspondence between trait-based and observed GPP.

It is reasonable to expect a slight overestimate, perhaps

as high as 54%, of light use efficiency under optimal

laboratory conditions. Just as adjusting for optimal light

use efficiency in terrestrial plants improved terrestrial

ecosystem GPP estimates (Madani et al. 2014), our

findings suggest that estimation of phytoplankton effect

traits under natural conditions or the inclusion of more

sophisticated models of photosynthesis that include the

potential for photoinhibition (Jassby and Platt 1976)

would further improve aquatic trait-based model

performance.

Future applications

We use GPP as the ecosystem function of choice, but

there are many other aquatic ecosystem processes that

could be modeled under the trait-based framework. For

example, cyanobacteria toxin production may be

accurately modeled if taxon-specific toxin production

rates were known. Environmental change will favor

cyanobacteria over other phytoplankton through their

response traits, and predicting community toxin pro-

duction would benefit resource managers who need to

predict toxin levels that may be dangerous to livestock,

pets, and humans (Carey et al. 2012). Additionally, the

trait-based approach could be applied to phytoplankton

production of dimethylsulfide (DMS), which can influ-

ence global climate. Dimethylsulfide production rates

can vary over three orders of magnitude across

phytoplankton species, which is 10 times more than in

the set of a’s that we used in the current study; thus it is

likely that estimates of community DMS production

would benefit from taxon-specific modeling under a

trait-based framework (Charlson et al. 1987).

Aquatic environments are extremely dynamic and there

is a quick turnover time in phytoplankton communities.

Coupled with the ability to estimate temporally resolved

ecosystem function using autonomous sensor technology,

we suggest that these ecosystems are ideal for examining

emergent properties of complex systems and, ultimately,

can help bridge the gap between population, community,

and ecosystem ecology.
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