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Abstract
This paper proposes a physics-guided recurrent neural net-
work model (PGRNN) that combines RNNs and physics-
based models to leverage their complementary strengths and
improve the modeling of physical processes. Specifically, we
show that a PGRNN can improve prediction accuracy over
that of physical models, while generating outputs consis-
tent with physical laws, and achieving good generalizabil-
ity. Standard RNNs, even when producing superior pre-
diction accuracy, often produce physically inconsistent re-
sults and lack generalizability. We further enhance this ap-
proach by using a pre-training method that leverages the
simulated data from a physics-based model to address the
scarcity of observed data. Although we present and evaluate
this methodology in the context of modeling the dynamics
of temperature in lakes, it is applicable more widely to a
range of scientific and engineering disciplines where mecha-
nistic (also known as process-based) models are used, e.g.,
power engineering, climate science, materials science, com-
putational chemistry, and biomedicine.

1 Introduction

Physics-based models of dynamical systems are often
used to study engineering and environmental systems.
Despite their extensive use, these models have several
well-known limitations due to simplified representations
of the physical processes being modeled or challenges
in selecting appropriate parameters. Given rapid data
growth due to advances in sensor technologies, there
is a tremendous opportunity to systematically advance
modeling in these domains by using machine learning
(ML) methods. However, capturing this opportunity
is contingent on a paradigm shift in data-intensive sci-
entific discovery since the black box use of ML often
leads to serious false discoveries in scientific applica-
tions [9, 12]. This paper presents a novel methodology
for combining physics-based models with state-of-the-
art deep learning methods to leverage their complemen-
tary strengths. Although we present and evaluate this
methodology in the context of modeling the dynamics

∗These authors have equal contribution.

of temperature in lakes, it is applicable more widely to
a range of scientific and engineering disciplines where
mechanistic (also known as process-based) models are
used, e.g., power engineering, climate science, materials
science, computational chemistry, and biomedicine.

Even though physics-based models are based on
known laws that govern relationships between input and
output variables, they often rely on a large number of
unknown parameters. These parameters must be esti-
mated (or calibrated) from observed data, which is often
scarce. A standard approach for model calibration is
to intelligently search the space of parameter combina-
tions and choose parameter combinations that result in
the best performance on training data. This approach
is computationally expensive as well as highly prone to
over-fitting. Another limitation is that the majority of
physics-based models implement approximate forms of
physical relationships, either due to incomplete knowl-
edge of certain processes or for practical computing pur-
poses. Such approximations introduce additional pa-
rameters to these models that must be calibrated from
data, making the process of model calibration even more
challenging. These issues individually or in combination
can introduce biases and thus result in unacceptable
performance. The limitations of physics-based models
cut across discipline boundaries and are well known in
the scientific community [11].

ML models, which have found tremendous suc-
cess in several commercial applications where large-scale
data is available, e.g., computer vision, and natural lan-
guage processing, are increasingly being considered as
promising alternatives to physics-based models by the
scientific community. However, direct application of
black-box ML models to a scientific problem encounters
three major challenges: 1. State of the art (SOA) ML
models that are powerful enough to effectively repre-
sent spatial and temporal processes inherent in physical
systems can often perform better than traditional em-
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pirical models (e.g., regression-based models) used by
the science communities as an alternative to physics-
based models. However, they require a lot of training
data, which is scarce in most practical settings. 2. Em-
pirical models (including the SOA ML models) simply
identify statistical relations between inputs and the sys-
tem variables of interest (e.g., the temperature profile of
the lake) without taking in to account any physical laws
(e.g., conservation of energy or mass) and thus can pro-
duce results that are inconsistent with physical laws. 3.
Relationships produced by empirical models can at best
be valid only for the set of forcing variable combinations
present in the training data and are unable to generalize
to scenarios unseen in the training data. For example, a
ML model trained on a water body for today’s climate
may not be accurate for future warmer climate scenar-
ios. As an alternative approach to both physics-based
and empirical models, we present Physics-Guided Re-
current Neural Network models (PGRNN) as a general
framework for modeling physical phenomena with po-
tential applications for many disciplines. PGRNN in-
corporates physics into the ML model by generalizing
the loss function to include physical laws as the third
component beyond the traditional notions of error and
model complexity [9].

Our proposed Physics-Guided Recurrent Neural
Networks model (PGRNN) is developed in the context
of lake water temperature modeling at a daily scale.
The temperature of water in a lake is known to be an
ecological master factor [13] that controls the growth,
survival, and reproduction of fish [19]. Warming water
temperatures can increase the occurrence of aquatic
invasive species [16, 20], which may displace fish and
native aquatic organisms, and result in more harmful
algal blooms (HABs) [4]. Understanding temperature
change and the resulting biotic winners and losers is
timely science that can also be directly applied to inform
priority action for natural resources.

The PGRNN model has a number of novel aspects.
This model contains two parallel recurrent structures
- a standard RNN flow and an energy flow to be able
to capture the variation of energy balance over time.
While the standard RNN flow models the temporal
dependencies that better fit observed data, the energy
flow aims to regularize the temporal progression of the
model in a physically consistent fashion.

To further improve the learning performance with
the scarcity of observed data, we propose a pre-training
method that utilizes the simulated data generated by
physics-based models. While the simulated data are
not an accurate reflection of the observed data, this
pre-training algorithm has the potential to produce a
better initialized status for the learning model and thus

requires less observed data to fine-tune model parame-
ters. Finally, we show that the proposed PGRNN model
has the flexibility to incorporate additional physical con-
straints that are involved in specific applications. For
example, in the lake temperature simulation problem,
predicted values of the temperature at different depths
should be such that denser water is at a lower depth,
which is known as the density-depth constraint [10].

We evaluate the proposed method in a reasonably
large real-world system, Lake Mendota in Wisconsin.
This lake is chosen for evaluation, as it is one of the
most extensively studied lake systems and plenty of
observed data is available to evaluate the performance
of any new approach. We show that the modeling
of energy conservation can successfully improve the
learning performance and the generalization capacity.
Moreover, the results confirm that the pre-training
method can help achieve a reasonable performance even
with a small amount of observed data. Finally, we show
that after incorporating the density-depth constraint,
the PGRNN model can produce both highly accurate
and physically meaningful predictions.

2 Problem Formulation

To fully capture the temperature change in a lake
system, we are interested in simulating the temperature
of water at each depth d, and on each date, t.

Specifically, we consider the physical variables gov-
erning the dynamics of lake temperature at every depth
and time-step as the set of input drivers, X = {xd,t}.
These chosen features are known to be the primary
drivers of lake thermodynamics [7]. This includes mete-
orological recordings at the surface of water such as the
amount of solar radiation, wind speed, air temperature,
etc. Given the input drivers, we aim to predict water
temperature Y = {yd,t}. In particular, yd,t denotes the
temperature at depth d and at time step t.

3 Preliminaries

3.1 General Lake Model (GLM) The physics-
based GLM captures a variety of physical processes
governing the dynamics of water temperature in a
lake, including the heating of the water surface due
to incoming short-wave radiation, the attenuation of
radiation beneath the water surface, the mixing of layers
with varying energies at different depths, and the loss
of heat from the surface of the lake via evaporation or
long-wave radiation (shown in Fig. 1). We use GLM
as our preferred choice of physics-based model for lake
temperature modeling due to its model performance and
wide use among the lake modeling community.

The GLM has a number of parameters (e.g., pa-
rameters related to vertical mixing, wind sheltering, and
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process for all the depths, as well as cross-sectional
depth area ad.

Note that the modeling of energy flow using the
procedure described above does not require any input
of true labels/observations. According to Eqs. 4.8-4.11,
the heat fluxes and lake energy are computed using
only input drivers and predicted temperature. In light
of these observations, we can extend this model to
incorporate the energy conservation for other systems
which have only a few labeled data points. This enforces
predicted temperatures in unmonitored systems to also
follow the universal law of energy conservation.

4.2 Pre-training using Physical Simulations In
many environmental systems, observed data is limited
due to the extensive labor required to deploy sensors
and process the data. Therefore, the learning model
needs to be effectively trained using only small amount
of observed data. For scientific problems, it is also
critical to build generalizable models that can be applied
to different systems. For example, a model built on
one lake should be able to generalize to another lake
which has limited observed data. However, traditional
data science models are known to suffer from the data
heterogeneity problem where training data and testing
data are from different distributions [15]. Hence, the
RNN-based model trained with limited observed data
is very likely to lead to unsatisfactory performance.

To address the issue of limited observed data,
We pretrain the PGRNN model using the simulated
data produced by a simple physics-based model. In
particular, given the input drivers, we can run the GLM
to predict temperature at every depth and at every day.
These simulated temperature data by GLM conform
to underlying physical laws used to build the GLM.
Hence, the pre-training using these simulated data can
result in a physically consistent initialized model. When
applying the pretrained model to a new system, we fine-
tune the model using limited observed data. In our
experiments, we show that this pre-training method can
achieve high accuracy given very few observed data.

4.3 Density-depth Constraint While the model-
ing of energy flow allows the incorporation of the most
important physical process that controls water temper-
ature dynamics, other physical constraints relevant to
lake temperature exist. The incorporation of these ad-
ditional constraints can help guide the model to make
predictions that are consistent with real-world physics.
To demonstrate the capacity of the PGRNN model to
incorporate these constraints, we consider an illustrative
example for adding density-depth constraint as follows.

It is known that the density of water monotonically

increases with depth and thus can be used as constraints
on the outputs of PGRNN. We first transform the
predicted temperature Y into the density values ρ

according to the following known physical equation [14]:

(4.12) ρ = 1000× (1−
(Y + 288.9414)× (Y − 3.9863)2

508929.2× (Y + 68.12963)
).

Then, we add an extra penalty for violation of
density-depth relationship. Specifically, on any pair of
consecutive depths d and d + 1, if ρd,t is larger than
ρd+1,t, then this is considered as a violation to the
density-depth relation. In this way, we define the loss
of density-depth constraint as:

(4.13)

∆ρd,t = ρd,t − ρd+1,t,

LDC =
1

T (Nd − 1)

∑

t

∑

d

ReLU(∆ρd,t),

where ReLU(·) is used to ensure that only pairs with
inverse density values are counted towards the penalty.

Combining this with Eq. 4.7, the complete training
objective becomes:
(4.14) L = LRNN + λECLEC + λDCLDC,

where λDC is the hyper-parameter to control the penalty
for violating the density-depth constraint.

5 Experiment

Our dataset was collected from Lake Mendota in Wis-
consin, USA. This lake system is reasonably large (∼40
km2 in area) and displays sufficient dynamics in the
temperature profiles over time. Observations of lake
temperature were collated from a variety of sources, in-
cluding the North Temperate Lakes Long-Term Ecolog-
ical Research Program and a web resource that collates
data from federal and state agencies, academic mon-
itoring campaigns, and citizen data [17]. These tem-
perature observations vary in their distribution across
depths and time. There are certain days when observa-
tions are available at multiple depths while only a few
or no observations are available on some other days.

The input drivers that describe prevailing meteo-
rological conditions are available on a continuous daily
basis from April 02, 1980 to December 30, 2014. Specifi-
cally, we use a set of 10 drivers as input variables, which
include short-wave and long-wave radiation, air temper-
ature, relative humidity, wind speed, frozen and snow-
ing indicators, etc. In contrast, observational data for
training and testing the models is not uniform, as mea-
surements were made at varying temporal and spatial
(depth) resolutions. In total, 13,158 observations were
used for the study period.

5.1 Performance for prediction and generaliza-
tion We use the observed data from April 02, 1980 to
October 31, 1991 and from June 01, 2003 to December
30, 2014 as training data (in total 8,037 observations).
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Table 1: Performance of RNN, PGRNN, as well as
pretrained models from Lake Mendota (RNNp and
PGRNNp) and Florida (RNNp̃ and PGRNNp̃) using
different amounts of observed data.
Method 2% 20% 100%

RNN 2.311(±0.240) 1.531(±0.083) 1.489(±0.091)

PGRNN 2.156(±0.178) 1.484(±0.102) 1.466(±0.063)

RNNp 1.650(±0.169) 1.417(±0.113) 1.385(±0.080)

PGRNNp 1.592(±0.175) 1.409(±0.103) 1.377(±0.076)

RNNp̃ 1.930(±0.173) 1.476(±0.096) 1.398(±0.069)

PGRNNp̃ 1.759(±0.147) 1.470(±0.091) 1.394(±0.071)

Then we apply the trained model to predict the temper-
ature at different depths for the period from November
01, 1991 to May 31, 2003 (5,121 observations).

To give a sense of the overall performance of the
many variations of the PGRNN approach we evaluate in
this section, we provide the following statistics for the
state-of-the-art GLM model. The uncalibrated GLM
model achieves the RMSE of 2.950 in the test period.
The GLM model can also be fine-tuned to fit each lake
system by optimizing the parameter set to minimize
model error [21]. If we use the same 2% training data
to optimize parameters in the GLM model, it can reach
the test RMSE of 2.645. If we fine-tune it using 100%
training data, it will reach the test RMSE of 2.253.

To verify that energy conservation and pre-training
helps improve the prediction and genrealization, we
compare RNN and PGRNN in terms of their prediction
RMSE. Here we do not include the basic neural network
since it produces RMSE around 1.8, which is far higher
than standard RNN.

To test whether each model can perform well using
reduced observed data, we randomly select different
proportion of data from the training period. For
example, to select 20% of training data, we remove every
observation in our training period with 0.8 probability.
The test data stays the same regardless of training data
selection. We repeat each test 10 times and report the
mean RMSE and standard deviation.

According to Table 1 (rows 1-2), we can observe
that PGRNN consistently outperforms standard RNN.
The gap is especially obvious when using smaller subsets
of observed data (e.g., 2% data). PGRNN can reach
reasonable accuracy using a small amount of observed
data because the law of energy conservation regularizes
the model to retain physical consistency.

We can see that PGRNN using only 2% observed
data can outperform the fully calibrated GLM model
(using 100% data). The PGRNN model tuned using
100% data and the pretrained models can achieve much
lower RMSE than the GLM model.

We also verify that the pre-training can indeed im-
prove prediction accuracy and generalizability of the

model. A basic premise of pre-training our models is
that GLM simulations, though imperfect, provide a syn-
thetic realization of physical responses of a lake to a
given set of meteorological drivers. Hence, pre-training
a neural network using GLM simulations allows the net-
work to emulate a synthetic but physical phenomena.
Our hypothesis is that such a pretrained model requires
fewer labeled samples to achieve good generalization
performance, even if the GLM simulations do not match
with the observations. To test this hypothesis, we con-
duct an experiment where we generate GLM simulations
with input drivers from Lake Mendota. These simula-
tions have been created using a GLMmodel with generic
parameter values that are not calibrated for Lake Men-
dota, resulting in large errors in modeled temperature
profiles with respect to the real observations on Lake
Mendota (RMSE=2.950). Nevertheless, these simulated
data are physically consistent and by using them for
pre-training, we can demonstrate the power of our ML
models to work with limited observed data while lever-
aging the physics inherent in the physical models.

We pre-train RNN and PGRNN using such simu-
lated data and we report their performance when fine-
tuned with true observations in Table 1 (rows 3-4).
The comparisons between RNN and RNNp and between
PGRNN and PGRNNp show that the pre-training can
significantly improve the performance. The improve-
ment is especially obvious given small amount of ob-
served data. Moreover, we find that the training RNN
and PGRNN model commonly takes 150-200 epochs to
converge while the training for RNNp and PGRNNp

only takes 30-50 epochs to converge. This demonstrates
that pre-training can provide a better initialized status
for the learning model.

To assess the generalization ability of ML models in
input conditions different from what we have observed
previously, we conduct a different experiment. Here
we generate GLM simulations for a synthetic lake with
input drivers from Florida (which are very different from
the typically much colder conditions in Wisconsin) and
then pretrain RNN and PGRNN using the simulated
data by GLM based on these input drivers. We
show the performance of pretrained models (RNNp̃ and
PGRNNp̃) in Table 1 (rows 5-6).

While RNNp̃ and PGRNNp̃ trained using these in-
put drivers and simulated data in Florida have very
poor performance when directly applied to Lake Men-
dota (RMSE=9.010 for RNNp̃ and 8.657 for PGRNNp̃),
once they are refined using observed data from Lake
Mendota, they get much better. Here we note that
PGRNNp̃ improves with a much greater amount than
RNNp̃, which shows the increased generalization power
obtained by having a model with physics built into it.
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model with an optimized parameter set [1], but suffered
physical inconsistencies such as violations of the con-
servation of energy and denser water being on top of
less dense water. Our PGRNN approach, which used a
loss function with physical constraints, reduced or elimi-
nated two different types of physical inconsistencies (en-
ergy conservation and depth-density consistency) while
also improving the model accuracy.

We also studied the ability of pre-training these
models using simulated data to deal with the scarcity
of observed data. Using the simulated data from a
poorly parameterized physics-based model, we observed
an increasing model performance of PGRNN over RNN
with fewer observation data used for training. Thus,
PGRNN can leverage the strengths of physics-based
models while also filling in knowledge gaps by overlaying
features learned from data.

The proposed method can also be adjusted to model
other important physical laws in dynamical systems,
such as the law of mass conservation. Since energy con-
servation and mass conservation are universal laws in
dynamical systems, the proposed PGRNN model can
be applied to a variety of scientific problems such as
nutrient exchange in lake systems and analysis of crop
field production, as well as engineering problems such
as auto-vehicle refueling design. Moreover, the proposed
model allows incorporation of additional physical con-
straints specific to different tasks. Therefore, we an-
ticipate this work to be an important stepping-stone
towards more innovations of machine learning for scien-
tific knowledge discovery.

An extended version of this paper is available at [8].
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